Entrar Página Discusión Historial Go to the site toolbox

4.6. Identificación de posibles movimientos rígidos

De Laplace

1 Enunciado

En un hipotético sólido rígido, consideramos los puntos

\overrightarrow{OA}=\vec{\imath}\qquad\overrightarrow{OB}=\vec{\jmath}\qquad\overrightarrow{OC}=\vec{k}

y analizamos los casos correspondientes a las siguientes velocidades para los tres puntos:

Caso \vec{v}^A \vec{v}^B \vec{v}^C
I 2\vec{\imath}+2\vec{\jmath}+4\vec{k} 2\vec{\imath}+2\vec{\jmath}+4\vec{k} 2\vec{k}
II 2\vec{\imath}+\vec{\jmath}+2\vec{k} 3\vec{\imath}+2\vec{\jmath} 2\vec{\imath}+4\vec{\jmath} + 2\vec{k}
III 2\vec{\imath}+2\vec{\jmath}+2\vec{k} 2\vec{\imath}+2\vec{\jmath}+2\vec{k} 2\vec{\imath}+2\vec{\jmath}+2\vec{k}
IV 2\vec{\imath}+3\vec{\jmath} \vec{\imath}+2\vec{\jmath}-\vec{k} 4\vec{\imath}+4\vec{\jmath}+2\vec{k}
V 2\vec{\imath}+\vec{k} 4\vec{\imath}+2\vec{\jmath}+3\vec{k} 3\vec{\imath}+\vec{\jmath}+2\vec{k}
VI 2\vec{\imath}+\vec{\jmath}+2\vec{k} 3\vec{\imath}+2\vec{\jmath}+2\vec{k} -\vec{\imath}+\vec{\jmath}+2\vec{k}

Todas las cantidades están expresadas en las unidades del SI.

Identifique cuáles de las situaciones anteriores son compatibles con la condición de rigidez. Para las que sí lo son, identifique si se trata de un movimiento de traslación pura, rotación pura o helicoidal.

2 Introducción

Para identificar los diferentes estados de movimiento, puesto que lo que se nos da son las velocidades de tres puntos no alineados, es seguir el siguiente esquema:

Archivo:flujo-solido-2.jpg

3 Caso I

Comprobamos primero si se trata de un posible movimiento rígido, chequeando la condición de equiproyectividad para cada par de puntos

Partículas A y B
\overrightarrow{AB}=-\vec{\imath}+\vec{\jmath}\qquad\left\{\begin{matrix}\vec{v}^A\cdot\overrightarrow{AB} & = & (2\vec{\imath}+2\vec{\jmath}+4\vec{k})\cdot(-\vec{\imath}+\vec{\jmath}) & = & 0 \\ \vec{v}^B\cdot\overrightarrow{AB} & = & (2\vec{\imath}+2\vec{\jmath}+4\vec{k})\cdot(-\vec{\imath}+\vec{\jmath}) & = & 0 \end{matrix}\right.
Partículas A y C
\overrightarrow{AC}=-\vec{\imath}+\vec{k}\qquad\left\{\begin{matrix}\vec{v}^A\cdot\overrightarrow{AC} & = & (2\vec{\imath}+2\vec{\jmath}+4\vec{k})\cdot(-\vec{\imath}+\vec{k}) & = & 2 \\ \vec{v}^C\cdot\overrightarrow{AC} & = & (2\vec{k})\cdot(-\vec{\imath}+\vec{k}) & = & 2 \end{matrix}\right.
Partículas B y C
\overrightarrow{BC}=-\vec{\jmath}+\vec{k}\qquad\left\{\begin{matrix}\vec{v}^B\cdot\overrightarrow{BC} & = & (2\vec{\imath}+2\vec{\jmath}+4\vec{k})\cdot(-\vec{\jmath}+\vec{k}) & = & 2 \\ \vec{v}^C\cdot\overrightarrow{BC} & = & (2\vec{k})\cdot(-\vec{\jmath}+\vec{k}) & = & 2 \end{matrix}\right.

Se verifica en los tres casos, por lo que se trata de un movimiento posible para un sólido rígido.

Herramientas:

Herramientas personales
TOOLBOX
LANGUAGES
licencia de Creative Commons
Aviso legal - Acerca de Laplace