1.1. Ejemplos de análisis dimensional
De Laplace
Revisión a fecha de 15:33 8 sep 2010; Antonio (Discusión | contribuciones)
1 Enunciado
A partir de las relaciones definitorias
Velocidad | Cantidad de movimiento | Aceleración | Fuerza |
---|---|---|---|
![]() | ![]() | ![]() | ![]() |
Trabajo | Potencia | Momento cinético | Momento de una fuerza |
![]() | ![]() | ![]() | ![]() |
determine las ecuaciones dimensionales de estas magnitudes, así como sus unidades en el SI en función de las unidades fundamentales de este sistema.
2 Velocidad
La velocidad se define como la derivada de la posición respecto al tiempo. Una derivada no es más que un cociente entre dos cantidades muy pequeñas y por tanto sus dimensiones serán las del numerador divididas por las del denominador, esto es,
![[v] = \frac{[r]}{[t]} = L T^{-1}](/wiki/images/math/4/a/8/4a863b7095d58bec7e7ed807d4621882.png)
3 Cantidad de movimiento
La cantidad de movimiento es el producto de la masa por la velocidad, por lo que sus dimensiones serán las del producto de estas dos cantidades:
![[p]= [m][v]= MLT^{-1}\,](/wiki/images/math/c/c/f/ccf3c8fda602830730e68a41994ae67f.png)
La unidad SI de la cantidad de movimiento será
![u_p = 1\,\frac{\mathrm{kg}\cdot\mathrm{m}}{\mathrm{s}}/math></center>
==Aceleración==
==Fuerza==
==Trabajo==
==Potencia==
==Momento cinético==
==Momento de una fuerza==
[[Categoría:Problemas de metrología]]](/wiki/images/math/6/1/8/6181efc1ec3e6e29fd27e5c22541715b.png)