Entrar Página Discusión Historial Go to the site toolbox

Problemas de cinemática del sólido rígido (G.I.T.I.)

De Laplace

Contenido

1 Ejemplo de campo de velocidades de un sólido

Un campo de velocidades de un sistema de partículas tiene la expresión, en el SI,

\vec{v}=(2 + 6 y + 3 z)\vec{\imath}+(3 - 6 x - 2 z)\vec{\jmath}+(1 - 3 x + 2 y)\vec{k}
  1. Pruebe que corresponde al movimiento de un sólido rígido.
  2. Determine la velocidad angular y la velocidad de deslizamiento.
  3. Halle la ecuación del eje instantáneo de rotación y mínimo deslizamiento.

2 Velocidad de tres puntos de un sólido

Los vectores de posición y las velocidades de tres puntos de un sólido son, en el SI,


\begin{array}{rclcrcl}
\overrightarrow{OA}&=&\vec{\imath}+\vec{k}&\qquad &
\vec{v}^A & = & 6\vec{\imath}+4\vec{\jmath}+a\vec{k}\\
\overrightarrow{OB}&=&-\vec{\imath}+\vec{\jmath}&\qquad &
\vec{v}^B& = & b\vec{\imath}-\vec{\jmath}+2\vec{k}\\
\overrightarrow{OC}&=&-\vec{\jmath}-\vec{k}&\qquad &
\vec{v}^C&=&4\vec{\imath}+c\vec{\jmath}+2\vec{k}
\end{array}
  1. Halle los valores de a, b, c.
  2. Halle la velocidad del punto \overrightarrow{OP}=\vec{\imath}-\vec{\jmath}-\vec{k}.
  3. Calcule la velocidad angular y la de deslizamiento
  4. Determine la posición del eje instantáneo de rotación y mínimo deslizamiento.

3 Triángulo en movimiento helicoidal

El triángulo de vértices A, B y C, constituye un sólido rígido en movimiento respecto del sistema de referencia fijo OXYZ. De dicho movimiento se conocen los siguientes datos:

  • Los vértices A y B permanecen en todo instante sobre el eje OZ, desplazándose ambos con igual velocidad instantánea: \vec{v}^A = \vec{v}^B = v(t) \vec{k}.
  • El vértice C se mueve describiendo la hélice Γ, que en el sistema OXYZ está descrita por las ecuaciones paramétricas siguientes (donde R y h son constantes conocidas):
\vec{r}(\theta)= R\cos\theta\vec{\imath}+R\,\mathrm{sen}\,\theta\vec{\jmath}+ h\theta\vec{k}
  1. Indique de forma razonada cuál es el eje instantáneo de rotación y mínimo deslizamiento en el movimiento descrito. Determine el vector velocidad angular en términos de los datos expresados en el enunciado.
  2. Exprese la componente normal de la aceleración del vértice C en un instante cualquiera, en función de los datos del enunciado.
  3. Para el caso en que v(t) = v0 (cte.), y h = R / 2, calcule la aceleración del vértice C. Determine la ley horaria s = s(t) con que el punto C describe su trayectoria.

4 Ejemplo de movimiento de precesión

El movimiento de precesión de una peonza puede describirse como una rotación en torno a un eje instantáneo que a su vez está rotando, manteniéndose fijo el punto de apoyo. Supongamos el caso particular

\vec{v}^O = \vec{0}        \vec{\omega}=3\cos(t)\vec{\imath}+3\,\mathrm{sen}\,(t)\vec{\jmath}+4\vec{k}
  1. Determine el campo de velocidades del sólido.
  2. Determine el campo de aceleraciones del sólido. ¿Es la aceleración de un punto igual a la derivada de la velocidad en ese punto respecto al tiempo?
  3. Halle, para cada instante las componentes intrínsecas de la aceleración y el radio de curvatura de los puntos
 \overrightarrow{OA}=5\vec{k}\qquad \overrightarrow{OB}=5\vec{\imath}

Herramientas:

Herramientas personales
TOOLBOX
LANGUAGES
licencia de Creative Commons
Aviso legal - Acerca de Laplace