Entrar Página Discusión Historial Go to the site toolbox

Tren de dos ruedas (GIE)

De Laplace

Revisión a fecha de 23:49 9 ene 2019; Antonio (Discusión | contribuciones)
(dif) ← Revisión anterior | Revisión actual (dif) | Revisión siguiente → (dif)

Contenido

1 Enunciado

Un sistema está formado por dos discos homogéneos de masa m y radio R. Los discos están conectados mediante una varilla de masa despreciable y longitud 4R. Los discos están unidos a la varilla mediante rodamientos que permiten el giro sin fricción. Ambos discos pueden rodar sin deslizar sobre una superficie horizontal en la que el coeficiente de rozamiento estático vale μ. Sea A el centro del disco delantero, B el del trasero, C el de contacto del disco delantero con el suelo y D el del trasero con el suelo.

Se tira del disco delantero mediante una fuerza constante horizontal \vec{F}_A=F_A \vec{\imath}.

  1. Determine la aceleración de los centros de los dos discos cuando se ejerce esta fuerza.
  2. Halle el valor de las fuerzas sobre los discos en los puntos C y D, de contacto de estos con el suelo, así como la tensión de la varilla.
  3. Halle el máximo valor que puede tener F_A si no se desea que ninguno de los discos deslice. Si se alcanza este valor ¿Cuál es el primer disco que desliza, el delantero, el trasero, o ambos al mismo tiempo?

2 Aceleraciones

\vec{a}_A=\vec{a}_G=\frac{F_A}{3m}\vec{\imath}

3 Fuerzas

\vec{F}_C=\vec{F}_D=-\frac{F_A}{6}\vec{\imath}+mg\vec{\jmath}

 

\vec{F}_{TA}=-\frac{F_A}{2}\vec{\imath}\qquad\qquad\vec{F}_{TB}=+\frac{F_A}{2}\vec{\imath}

4 Deslizamiento inminente

F_A\geq 6\mu mg\,

Herramientas:

Herramientas personales
TOOLBOX
LANGUAGES
licencia de Creative Commons
Aviso legal - Acerca de Laplace