Entrar Página Discusión Historial Go to the site toolbox

Dos barras articuladas (CMR)

De Laplace

Contenido

1 Enunciado

Un sistema está formado por dos varillas homogéneas, ambas de masa m y longitud b, situadas sobre un plano horizontal (“sólido 1”). La varilla “2” está articulada por su extremo O a un punto fijo del plano, mientras que por su extremo A está articulada a la varilla “3”.

  1. Escriba la lagrangiana del sistema, empleando como coordenadas generalizadas los ángulos que ambas varillas forman con el eje OX1, ϕ (para la varilla 2) y ψ (para la 3).
  2. Obtenga las ecuaciones de movimiento para estos dos ángulos.
  3. ¿Es cíclica alguna de estas coordenadas?

Si en lugar de esas coordenadas se usan el ángulo ϕ que la varilla OA forma con OX y el ángulo θ que AB forma con la prolongación de OA

  1. ¿Cómo queda la lagrangiana?
  2. ¿Y las ecuaciones de movimiento para estos ángulos?
  3. ¿Es cíclica alguna de estas coordenadas?
  4. Determine dos constantes de movimiento para este sistema.
  5. Con ayuda de estas constantes, reduzca el problema a una única ecuación de movimiento para el ángulo θ.

Suponga ahora que la varilla 2 es forzada a girar con velocidad angular constante Ω en torno a O.

  1. Escriba la lagrangiana para este sistema en función del ángulo θ.
  2. Obtenga la ecuación de movimiento para θ. ¿Es la misma que en el apartado (8)?
  3. ¿Se conserva la energía en este sistema? ¿Hay alguna otra constante de movimiento?

2 Lagrangiana del sistema

La lagrangiana del sistema se calcula como

\mathcal{L}=T-U

siendo T = K la energía cinética y U la potencial. En este caso, que no hay ninguna fuerza externa conservativa actuando sobre las varillas, esta energía potencial es nula.

U=0\,

La energía cinética es la suma de las de las dos varillas

T=T_2+T_3\,

La de la varilla 2 se calcula como la de una barra que gira en torno a un eje perpendicular por su extremo

T_2=\frac{1}{2}\left(\frac{1}{3}mb^2\right)\omega_{21}^2=\frac{mb^2}{6}\dot{\phi}^2

Para la varilla 3 aplicamos el teorema de König

T_3=\frac{1}{2}m|\vec{v}^{G}_{31}|^2+\frac{1}{2}I\omega_{31}^2

siendo G el centro de masas de la varilla 3.

No hace falta añadir más términos en la energía cinética de rotación porque el eje OZ es uno principal de inercia para ambas varillas y por tanto el momento cinético es paralelo a la velocidad angular

\frac{1}{2}\vec{\omega}\cdot\vec{L}_G=\frac{1}{2}I\omega^2

Este término de rotación vale

T_{3R}=\frac{1}{2}\left(\frac{1}{12}mb^2\right)\dot{\psi}^2=\frac{mb^2}{24}\dot{\psi}^2

La velocidad del centro de la varilla 3 la calculamos mediante la expresión del campo de velocidades de un sólido

\vec{v}^G_{31}=\vec{v}^A_{31}+\vec{\omega}_{31}\times\overrightarrow{AG}

La velocidad de A la calculamos usando que es una articulación

\vec{v}^A_{32}=\vec{0}\qquad\Rightarrow\qquad \vec{v}^A_{31}=\vec{v}^A_{21}=\vec{\omega}_{21}\times \overrightarrow{OA}

Sustituimos la posición relativa y la velocidad angular

\vec{\omega}_{21}=\dot{\phi}\vec{k}\qquad\overrightarrow{OA}=b\vec{\imath}_2\qquad\Rightarrow\qquad \vec{v}^A_{31}=\dot{\phi}b\vec{\jmath}_2

siendo \{\vec{\imath}_2,\vec{\jmath}_2,\vec{k}_2\} una base ligada al sólido 2 (aunque por ser un sistema plano \vec{k}_1=\vec{k}_2=\vec{k}_3, por lo que el subíndice es superfluo). Por otro lado,

\vec{\omega}_{31}=\dot{\psi}\vec{k}\qquad\qquad \overrightarrow{AG}=\frac{b}{2}\vec{\imath}_3\qquad\Rightarrow\qquad \vec{v}^G_{31}=\dot{\phi}\vec{\jmath}_{2}+\frac{b}{2}\dot{\psi}\vec{\jmath}_3

Obsérvese que la expresión contiene vectores de dos bases diferentes, por lo que hay que ser cuidadoso a la hora de hallar la energía cinética de traslación

T_{3T}=\frac{1}{2}m|\vec{v}^{G}_{31}|^2=\frac{m}{2}\vec{v}^{G}_{31}\cdot\vec{v}^{G}_{31}=\frac{mb^2}{2}\left(\dot{\phi}^2+\frac{1}{4}\dot{\psi}^2+\dot{\phi}\dot{\psi}\vec{\jmath}_2\cdot\vec{\jmath}_3\right)

El producto escalar de dos vectores unitarios es igual al coseno del ángulo que forman

\vec{\jmath}_2\cdot\vec{\jmath}_3=\cos(\psi-\phi)

Sumando todos los términos en la energía cinética obtenemos la total, que coincide con la lagrangiana

\mathcal{L}=T=\frac{mb^2}{6}(4\dot{\phi}^2+\dot{\psi}^2+3\dot{\phi}\dot{\psi}\cos(\psi-\phi))

3 Ecuaciones de movimiento

Estas dos coordenadas son independientes, por lo que podemos emplear las ecuaciones de Lagrange.

3.1 Para la coordenada ϕ

La ecuación para esta coordenada es

\frac{\mathrm{d}\ }{\mathrm{d}t}\left(\frac{\partial\mathcal{L}}{\partial\dot{\phi}}\right)-\frac{\partial\mathcal{L}}{\partial\phi}=0

Calculamos en primer lugar el momento conjugado

p_\phi=\frac{\partial\mathcal{L}}{\partial\dot{\phi}}= \frac{mb^2}{6}\left(8\dot{\phi}+3\dot{\psi}\cos(\psi-\phi)\right)

siendo su derivada temporal

\dot{p}_\phi=\frac{\mathrm{d}\ }{\mathrm{d}t}\left(\frac{\partial\mathcal{L}}{\partial\dot{\phi}}\right)=\frac{mb^2}{6}\left(8\ddot{\phi}+3\ddot{\psi}\cos(\psi-\phi)-3\dot{\psi}(\dot{\psi}-\dot{\phi})\mathrm{sen}(\psi-\phi)\right)

Por otro lado

\frac{\partial\mathcal{L}}{\partial\phi}=\frac{mb^2}{6}(3\dot{\phi}\dot{\psi}\,\mathrm{sen}(\psi-\phi))

Si sustituimos en la ecuación de Lagrange queda

\frac{mb^2}{6}\left(8\ddot{\phi}+3\ddot{\psi}\cos(\psi-\phi)-3\dot{\psi}(\dot{\psi}-\dot{\phi})\mathrm{sen}(\psi-\phi)-3\dot{\phi}\dot{\psi}\,\mathrm{sen}(\psi-\phi)\right)=0

que, simplificada, se reduce a

8\ddot{\phi}+3\ddot{\psi}\cos(\psi-\phi)-3\dot{\psi}^2\,\mathrm{sen}(\psi-\phi)=0

3.2 Para la coordenada ψ

La ecuación para esta coordenada es

\frac{\mathrm{d}\ }{\mathrm{d}t}\left(\frac{\partial\mathcal{L}}{\partial\dot{\psi}}\right)-\frac{\partial\mathcal{L}}{\partial\psi}=0

El momento conjugado de esta coordenada vale

p_\psi=\frac{\partial\mathcal{L}}{\partial\dot{\psi}}= \frac{mb^2}{6}\left(2\dot{\psi}+3\dot{\phi}\cos(\psi-\phi)\right)

siendo su derivada temporal

\dot{p}_\psi=\frac{\mathrm{d}\ }{\mathrm{d}t}\left(\frac{\partial\mathcal{L}}{\partial\dot{\psi}}\right)=\frac{mb^2}{6}\left(2\ddot{\psi}-3\dot{\phi}(\dot{\psi}-\dot{\phi})\mathrm{sen}(\psi-\phi)\right)

Por otro lado

\frac{\partial\mathcal{L}}{\partial\psi}=-\frac{mb^2}{6}(3\dot{\phi}\dot{\psi}\,\mathrm{sen}(\psi-\phi))

Sustituimos en la ecuación de Lagrange correspondiente

\frac{mb^2}{6}\left(2\ddot{\psi}-3\dot{\phi}(\dot{\psi}-\dot{\phi})\mathrm{sen}(\psi-\phi)+3\dot{\phi}\dot{\psi}\,\mathrm{sen}(\psi-\phi)\right)=0

que, simplificada, queda

2\ddot{\phi}+3\ddot{\phi}\cos(\psi-\phi)+3\dot{\phi}^2\,\mathrm{sen}(\psi-\phi)=0

3.3 Sistema de ecuaciones

Estas dos ecuaciones son acopladas en el sentido de que ambas combinan las dos aceleraciones angulares. Podemos despejar cada una de estas tratando las ecuaciones de Lagrange como un sistema de dos ecuaciones con dos incógnitas (\ddot{\phi} y \ddot{\psi}). El resultado es


\ddot{\phi}=\dfrac{3S \left(3 C \dot{\phi}^2+2\dot{\psi}^2\right)}{16-9 C^2}\qquad\qquad 
\ddot{\psi}=-\dfrac{3S \left(3 C  \dot{\psi}^2+8\dot{\phi}^2\right)}{16-9 C^2}

siendo

S=\mathrm{sen}(\psi-\phi)\qquad \qquad C=\cos(\psi-\phi)

Vemos que el sistema de ecuaciones no es en absoluto trivial. Su solución requiere del uso de software para computar la evolución en el tiempo de estas variables.

4 Cambio de coordenadas

El sistema anterior no permite identificar de forma sencilla la existencia de constantes de movimiento. Sí se puede apreciar que la energía mecánica es una constante, ya que no hay fuerzas que realicen trabajo sobre el sistema, pero no es evidente que haya constantes adicionales.

Una forma de buscar nuevas constantes es eligiendo un sistema distinto de coordenadas generalizadas, de manera que las integrales primeras aparezcan de forma natural.

Tal como se indica en el enunciado, vamos a emplear como coordenadas el mismo ángulo φ que forma el eje OX2 con el OX1 y el ángulo θ que forma el OX3 con el OX2, es decir

\psi=\theta+\phi\qquad\qquad \dot{\psi}=\dot{\phi}+\dot{\theta}

Para obtener la nueva lagrangiana no hace falta calcular la energía cinética desde el principio. Basta sustituir en la expresión final. El resultado es

\mathcal{L}=\frac{mb^2}{6}(4\dot{\phi}^2+(\dot{\phi}+\dot{\theta})^2+3\dot{\phi}(\dot{\phi}+\dot{\theta})\cos(\theta))

5 Nuevas ecuaciones de movimiento

Operamos de nuevo para obtener las ecuaciones de movimiento.

5.1 Para la coordenada ϕ

Calculamos el momento conjugado

p_\phi=\frac{\partial\mathcal{L}}{\partial\dot{\phi}}= \frac{mb^2}{6}(8\dot{\phi}+2(\dot{\phi}+\dot{\theta})+(2\dot{\phi}+\dot{\theta})\cos(\theta))

Obsérvese que no tiene el mismo valor que con la elección inicial de coordenadas. Si agrupamos términos y abreviamos el coseno como C

p_\phi=\frac{mb^2}{6}((10+6C)\dot{\phi}+(2+3C)\dot{\theta})

La derivada temporal del momento conjugado vale ahora

\dot{p}_\phi=\frac{\mathrm{d}\ }{\mathrm{d}t}\left(\frac{\partial\mathcal{L}}{\partial\dot{\phi}}\right)=\frac{mb^2}{6}((10+6C)\ddot{\phi}-6S\dot{\theta}\dot{\phi}+(2+3C)\ddot{\theta}-3S\dot{\theta}^2)

Por otro lado

\frac{\partial\mathcal{L}}{\partial\phi}=0

con lo que la ecuación de movimiento, simplificada, es

(10+6C)\ddot{\phi}-6S\dot{\theta}\dot{\phi}+(2+3C)\ddot{\theta}-3S\dot{\theta}^2=0

5.2 Para la coordenada θ

La ecuación para esta coordenada es

\frac{\mathrm{d}\ }{\mathrm{d}t}\left(\frac{\partial\mathcal{L}}{\partial\dot{\theta}}\right)-\frac{\partial\mathcal{L}}{\partial\theta}=0

El momento conjugado de esta coordenada vale

p_\theta=\frac{\partial\mathcal{L}}{\partial\dot{\theta}}= \frac{mb^2}{6}(2(\dot{\phi}+\dot{\theta})+3\dot{\phi}\cos(\theta))

Agrupamos y abreviamos

p_\theta= \frac{mb^2}{6}((2+3C)\dot{\phi}+2\dot{\theta})

Derivamos respecto al tiempo

\dot{p}_\theta=\frac{\mathrm{d}\ }{\mathrm{d}t}\left(\frac{\partial\mathcal{L}}{\partial\dot{\theta}}\right)= \frac{mb^2}{6}((2+3C)\ddot{\phi}-3S\dot{\theta}\dot{\phi}+2\ddot{\theta})

Por otro lado

\frac{\partial\mathcal{L}}{\partial\theta}=-\frac{mb^2}{6}(3\dot{\phi}^2S+3\dot{\phi}\dot{\theta}S)

Sustituimos en la ecuación de Lagrange correspondiente

\frac{\mathrm{d}\ }{\mathrm{d}t}\left(\frac{\partial\mathcal{L}}{\partial\dot{\theta}}\right)-\frac{\partial\mathcal{L}}{\partial\theta}= \frac{mb^2}{6}((2+3C)\ddot{\phi}-3S\dot{\theta}\dot{\phi}+2\ddot{\theta}+3\dot{\phi}^2S+3\dot{\phi}\dot{\theta}S)=0

que, simplificada, queda

 (2+3C)\ddot{\phi}+2\ddot{\theta}+3\dot{\phi}^2S=0

6 Constantes de movimiento

6.1 Asociada a ϕ

En la segunda forma de la lagrangiana que hemos escrito, la coordenada ϕ es ciclica, esto es, no aparece explícitamente en la lagrangiana

\frac{\partial\mathcal{L}}{\partial\phi}=0

lo cual implica, por la ecuación de Lagrange, que

\frac{\mathrm{d}\ }{\mathrm{d}t}\left(\frac{\partial\mathcal{L}}{\partial\dot{\phi}}\right) = 0

y por tanto el momento conjugado

p_\phi=\frac{\mathrm{d}\ }{\mathrm{d}t}\left(\frac{\partial\mathcal{L}}{\partial\dot{\phi}}\right)=\frac{mb^2}{6}((10+6C)\dot{\phi}+(2+3C)\dot{\theta})

es una constante de movimiento.

Esta cantidad está asociada a la invariancia del sistema ante una rotación, es decir, que si giramos todo el sistema un cierto ángulo Δϕ el sistema no se ve modificado.

En términos de las magnitudes vectoriales, esta constante representa la componente z del momento cinético del sistema respecto al origen O.

6.2 Independencia del tiempo

Por otro lado, la lagrangiana tampoco depende explícitamente del tiempo

\frac{\partial\mathcal{L}}{\partial t}=0

lo cual implica que la función hamiltoniana

\mathcal{H}=\dot{\phi}(\frac{\partial\mathcal{L}}{\partial\dot{\phi}}+\dot{\theta}(\frac{\partial\mathcal{L}}{\partial\dot{\theta}}-\mathcal{L}

es otra constante de movimiento.

Dado que la energía cinética es una función cuadrática de las velocidades, esta cantidad coincide con la energía mecánica del sistema

\mathcal{H}=E=T+U

Como además la energía potencial es nula, se deduce que la energía cinética

T=\frac{mb^2}{6}(4\dot{\phi}^2+(\dot{\phi}+\dot{\theta})^2+3\dot{\phi}(\dot{\phi}+\dot{\theta})\cos(\theta))

es otra constante en este problema.

7 Reducción del sistema

La constancia asociada a ϕ permite expresar las derivadas de esta variable en función de cantidades constantes. La velocidad generalizada vale

\dot{\phi}=\frac{8p_\phi}{mb^2(10+6C)}-\frac{(2+3C)}{(10+6C)}\dot{\theta}

y la aceleración generalizada, derivando esta ecuación,

\ddot{\phi}=\frac{48p_\phi}{mb^2}\frac{S\dot{\theta}}{(10+6C)^2}+\frac{9 S}{2 (5 + 3C)^2}\dot{\theta}^2-\frac{(2+3C)}{(10+6C)}\ddot{\theta}

Podemos llevar estas dos expresiones a la ecuación de movimiento para θ

 (2+3C)\ddot{\phi}+2\ddot{\theta}+3\dot{\phi}^2S=0

Resulta, tras un laborioso cálculo realizado con ayuda de Mathematica

\ddot{\theta}=\frac{3S((6p_\phi/mb^2)^2 +3 (2 + 3 C) (8 + 3 C))}{2 (-4 + 3 C) (4 + 3 C) (5 + 3 C)}

Este resultado ilustra que no siempre la obtención de una constante de movimiento produce un resultado más sencillo.

Podemos aprovechar también la conservación de la energía sustituyendo directamente el valor de \dot{\phi} en esta constante. En ese caso sí llegamos a una ecuación más sencilla

\dot{\theta}^2=-\frac{120E + 72 C E - b^2 m P^2}{mb^2 (-4 + 3 C) (4 + 3 C)}

8 Lagrangiana con varilla rotatoria

9 Ecuación con varilla rotatoria

10 Magnitud conservada

Herramientas:

Herramientas personales
TOOLBOX
LANGUAGES
licencia de Creative Commons
Aviso legal - Acerca de Laplace