Entrar Página Discusión Historial Go to the site toolbox

Corriente eléctrica (GIE)

De Laplace

Contenido

1 Introducción

La electrostática es el estudio del campo y las fuerzas debidos a cargas en reposo. Sin embargo, no es ese el estado natural de las cargas. Éstas suelen encontrarse en movimiento, bien debido a la agitación térmica, bien impulsadas por campos eléctricos y magnéticos. Cuando tenemos un movimiento colectivo de cargas se dice que tenemos una corriente eléctrica.

Si la corriente es independiente del tiempo se denomina corriente continua o corriente estacionaria. En caso contrario es una corriente dependiente del tiempo (con la corriente alterna como caso particular).

2 Modelos de conducción

Las corrientes eléctricas tienen todas en común el movimiento de cargas por el vacío o el interior de un material, pero el mecanismo por el que esto ocurre es muy diverso. Para describirlos se usan los modelos de conducción, que tienen una parte cualitativa y una descripción matemática (que no consideraremos).

Disoluciones salinas
El caso más sencillo es el de una cantidad de agua en el que hay sales disueltas. En este caso, flotando en la sopa hay iones de diferentes cargas y signos. De entrada tenemos los iones OH y H+ en que se disocia el agua, pero además tenemos Cl, Na+, Ca2+, K+, etc. dependiendo de las sales que haya disueltas. Cada una de las variedades cargadas se denomina una especie de portardores de carga, caracterizada por una valencia Z. Por ejemplo, todos los iones Cl constituyen una especie de valencia Z = − 1, todos los iones Ca2+ forman una especie de valencia Z = + 2. En agua destilada tenemos dos especies de portadores de carga (OH y H+). Si tiene sal común, habrá 4 especies (Cl, Na+, OH y H+). En agua de mar hay una enorme variedad de especies.
Conductores metálicos
Constituyen el caso más típico de conductores y son los de mayores aplicaciones industriales, donde se usan materiales conductores como cobre, oro, platino, etc. En un material metálico la conducción se produce porque hay electrones libres. Existe una red de iones fijos (los núcleos y la mayoría de los electrones de cada átomo) y una nube de electrones formada por uno o dos electrones por cada átomo (uno en el caso del cobre). Estos electrones no están asociados a ningún átomo en concreto, sino que pertenecen conjuntamente a toda la red, produciendo lo que se llama un enlace metálico. Estos electrones pueden moverse más o menos libremente por el interior del material, formando la corriente eléctrica. En este caso tenemos una sola especie de portadores de carga, los electrones.
Semiconductor
Un semiconductor, como el carbono o el silicio, está formado por una red cristalina en la que los electrones están ligados a cada átomo formando enlaces covalentes. En una red sin defectos y a 0K no puede haber corriente eléctrica ya que no hay portadores de carga disponibles.
Sin embargo, existen dos motivos por los que aparecen portadores en estos materiales:
  • Por la agitación térmica, que hace que algunos electrones tengan energía suficiente para abandonar el átomo al que pertenecen.
  • Por la presencia de impurezas (“dopado”) de otros materiales, que tienen un electrón de más o de menos.
        
En ambos casos, tenemos un cierto número de electrones que pueden moverse por la red, funcionando como portadores de carga. Pero además, el efecto de que un electrón abandone su átomo es la aparición de un hueco. A medida que otros electrones van ocupando este hueco, el efecto es el movimiento paraente del hueco en sentido contrario. Por ello, en un semiconductor tenemos dos especies de portadores: los electrones, con valencia −1 y los huecos con valencia +1.
Plasma
Un plasma es un estado de la materia consistente en un gas ionizado. En un plasma tenemos una gran variedad de portadores, ya que hay gran número de estados de ionización posible. En un plasma las cargas se mueven por el aire sometidas a las interacciones con el resto de cargas y con los campos externos.

3 Densidad de corriente

La magnitud que mide el movimiento promedio de las cargas en un material es la densidad de corriente. Para definirla se toma un elemento de volumen Δv (que es microscópico, pero contiene millones de cargas en su interior), situado en el punto \vec{r}, y se calcula el promedio del producto de las cargas por la velocidad

\vec{J}=\frac{1}{\Delta v}\sum_:{q_i\in\Delta v}q_i\vec{v}_i

La densidad de corriente es una magnitud vectorial, análoga hasta cierto punto a la cantidad de movimiento: cuanta más carga haya, mayor es la densidad de corriente; cuanto más rápida se mueva, mayor en la densidad. Si no hay cargas (vacío) o no se mueven (electrostática) la densidad de corriente se anula.

De la definición de la densidad se tiene que se mueve en C·m/s/m³ = A/m² donde un amperio (A) es igual a 1  C·s.

4 Intensidad de corriente

5 Ley de conservación de la carga

6 Ley de Ohm

7 Resistencia eléctrica

8 Potencia eléctrica. Efecto Joule

9 Generadores

Herramientas:

Herramientas personales
TOOLBOX
LANGUAGES
licencia de Creative Commons
Aviso legal - Acerca de Laplace