Entrar Página Discusión Historial Go to the site toolbox

Problemas de vectores libres (G.I.T.I.)

De Laplace

Contenido

1 Formulas potencialmente incorrectas

De las siguientes expresiones, indique cuáles son necesariamente incorrectas. Aquí las diferentes letras representan las magnitudes definidas en el problema de ejemplos de análisis dimensional, R es una distancia y \vec{r} el vector de posición; t es el tiempo:

(a) \vec{F} = m\frac{\vec{v}\times\vec{a}}{\vec{v}}
(b) \vec{F}\times(\vec{v}\times\vec{a}) = (\vec{p}\cdot\vec{a})\times\vec{a}
(c) \frac{\vec{L}}{R} = \vec{F}t-\vec{v}
(d) (\vec{r}\times\vec{p})\vec{L} = R(\vec{r}\cdot\vec{p})\vec{p}
(e) \frac{\vec{F}-\vec{p}/t}{m} =  \frac{\vec{r}-\vec{v}t}{t^2-t}
(f) \frac{1}{\vec{r}} = \frac{\vec{r}}{r^2}
(g) L  = \vec{r}\times\vec{p}
(h) \frac{W}{t} = \vec{F}\times\left(\vec{v}-\frac{R}{t}\right)

2 Ejemplo de clasificación de vectores

De los siguientes vectores ligados con sus respectivos puntos de aplicación:

a) \vec{v}_1 = 2\vec{\imath}-\vec{\jmath} + \vec{k} en A(3,1,1)\,
b) \vec{v}_2 = 2\vec{\imath}+\vec{\jmath} + \vec{k} en B(1,2,0)\,
c) \vec{v}_3 = 2\vec{\imath}-\vec{\jmath} + \vec{k} en C(-1,3,-1)\,
d) \vec{v}_4 = 2\vec{\imath}-\vec{\jmath} + \vec{k} en D(-3,4,-1)\,
e) \vec{v}_5 = 2\vec{\imath}+\vec{\jmath} + \vec{k} en E(7,5,3)\,

indique cuáles pueden representar al mismo vector deslizante y cuáles al mismo vector libre.

3 Paralelogramo en cuadrilátero

Sea ABCD un cuadrilátero arbitrario. Demuestre, usando el álgebra vectorial, que los puntos medios de sus cuatro lados constituyen los vértices de un paralelogramo.

4 Arco capaz

Sean A y B dos puntos diametralmente opuestos en una circunferencia c. Sea P otro punto de la misma circunferencia. Demuestre que los vectores \overrightarrow{AP} y \overrightarrow{BP} son ortogonales.

Inversamente, sean A, B y P tres puntos tales que \overrightarrow{AP} \perp \overrightarrow{BP}. Sea C el punto medio entre A y B. Pruebe que |\overrightarrow{CP}| = |\overrightarrow{CA}|.

5 Diagonales de un rombo

Demuestre que las diagonales de un rombo son perpendiculares entre sí.

6 Seno y coseno de una diferencia

A partir del producto escalar y del vectorial de dos vectores del plano, con módulo unidad, demuestre las fórmulas trigonométricas para el coseno y el seno de una diferencia de dos ángulos.

7 Teoremas del seno y del coseno

Con ayuda de productos escalares y vectoriales demuestre los teoremas del coseno

c^2 = a^2 + b^2 -2ab\,cos(\gamma)

y del seno

\frac{\mathrm{sen}\,\alpha}{a}=\frac{\mathrm{sen}\,\beta}{b}=\frac{\mathrm{sen}\,\gamma}{c}

en un triángulo de lados a, b y c y ángulos opuestos α, β y γ.

8 Volumen de un paralelepípedo

Sean los puntos de coordenadas (en el SI) O(1,0,2), A(3,2,4), B(2,6,8) y C(2, − 3,1). Determine el volumen del paralelepípedo definido por los vectores \overrightarrow{OA}, \overrightarrow{OB} y \overrightarrow{OC}.

Halle del mismo modo el volumen del paralelepípedo definido por los vectores \overrightarrow{AO}, \overrightarrow{AB} y \overrightarrow{AC}.

Calcule igualmente el volumen del tetraedro irregular definido por estos cuatro puntos.

9 Ejemplo de ecuación vectorial de un plano

Obtenga la ecuación del plano perpendicular al vector libre \vec{a}= 2\vec{\imath}+3\vec{\jmath}+6\vec{k} y que contiene a un punto P, cuya posición respecto del origen de un sistema de referencia OXYZ viene dada por el radiovector \vec{r} = \vec{\imath} + 5\vec{\jmath} + 3\vec{k}. Calcule la distancia que separa a dicho plano del origen O. (Unidades del SI)

10 Cálculo de distancia entre dos rectas

Sean las rectas r1, que pasa por los puntos A( − 2,5,1) y B(7, − 7,1), y r2 que pasa por C(5,4, − 3) y D(5,4,2) (todas las unidades en el SI). Empleando el álgebra vectorial, determine la distancia entre estas dos rectas.

11 Ejemplo de construcción de una base

Dados los vectores

\vec{v}=\vec{\imath}+2\vec{\jmath}+2\vec{k}        \vec{a}=6\vec{\imath}+9\vec{\jmath}+6\vec{k}

Construya una base ortonormal dextrógira, tal que

  • El primer vector vaya en la dirección de \vec{v}
  • El segundo esté contenido en el plano definido por \vec{v} y \vec{a} y apunte hacia el mismo semiplano (respecto de \vec{v}) que el vector \vec{a}.
  • El tercero sea perpendicular a los dos anteriores, y orientado según la regla de la mano derecha.

12 Cálculo de base dual

Sea B_1=\{\vec{v}_1,\vec{v}_2,\vec{v}_3\} una base vectorial arbitraria. Sean \{\vec{w}_1,\vec{w}_2,\vec{w}_3\} tres vectores definidos por

\vec{w}_1=\frac{\vec{v}_2\times\vec{v}_3}{\Delta}        \vec{w}_2=\frac{\vec{v}_3\times\vec{v}_1}{\Delta}        \vec{w}_3=\frac{\vec{v}_1\times\vec{v}_2}{\Delta}        \Delta =\vec{v}_1\cdot(\vec{v}_2\times\vec{v}_3)
1. Demuestre que el conjunto B_2=\{\vec{w}_1,\vec{w}_2,\vec{w}_3\} es también una base (llamada base dual de B1). ¿Cuánto vale el producto mixto de sus vectores?
2. Pruebe que se cumple
\vec{v}_i\cdot\vec{w}_k=\begin{cases} 1 & i = k \\ 0 & i\neq 0\end{cases}
3. Demuestre que las componentes de un vector en la base B1 pueden calcularse proyectando sobre la base B2, esto es, si
\vec{F} = F_1\vec{v}_1 + F_2\vec{v}_2 + F_3\vec{v}_3
la componente k viene dada por
F_k = \vec{F}\cdot\vec{w}_k
4. Halle la base dual de la base
B_1 =\{\vec{\imath},\vec{\imath}+\vec{\jmath},\vec{\imath}+\vec{\jmath}+\vec{k}\}
5. Calcule las componentes del vector
\vec{F} = 2\vec{\imath}-3\vec{\jmath}+\vec{k}
en las bases del apartado anterior.

13 Sistema de ecuaciones vectoriales

Demuestre que si se cumplen simultáneamente las condiciones

\vec{A}\cdot\vec{B} = \vec{A}\cdot\vec{C}        \vec{A}\times\vec{B} = \vec{A}\times\vec{C}

siendo \vec{A}\neq \vec{0}, entonces \vec{B} = \vec{C}; pero si se cumple una de ellas y la otra no, entonces \vec{B}\neq\vec{C}.

14 Vectores con tres condiciones (Ex.Nov/11)

Determine todos los vectores libres que cumplen las tres siguientes condiciones:

1) Tener una longitud de 14 m.

2) Ser ortogonal al vector (3\,\vec{\imath}+\vec{k}\,)\, m.

3) Formar junto a los vectores \,\vec{\imath}\,\, m y \,\vec{k}\, m un paralelepípedo de volumen igual a 6 m3.

15 Lados de un triángulo rectángulo (Ex.Nov/11)

¿Cuál de las siguientes ternas de vectores libres podría corresponder a los tres lados de un triángulo rectángulo?

1) \,\,\,\vec{a}=(-\vec{\imath}+4\,\vec{\jmath}+\vec{k}\,)\,\mathrm{m;}\,\,\,\,\,
\vec{b}=(2\,\vec{\imath}+\vec{\jmath}+\vec{k}\,)\,\mathrm{m;}\,\,\,\,\,
\vec{c}=(-\vec{\imath}-5\,\vec{\jmath}-2\,\vec{k}\,)\,\mathrm{m}\,

2) \,\,\,\vec{a}=(3\,\vec{\imath}+2\,\vec{k}\,)\,\mathrm{m;}\,\,\,\,\,
\vec{b}=(2\,\vec{\imath}-3\,\vec{k}\,)\,\mathrm{m;}\,\,\,\,\,
\vec{c}=(5\,\vec{\imath}+\vec{k}\,)\,\mathrm{m}\,

3) \,\,\,\vec{a}=(\vec{\imath}-2\,\vec{\jmath}+3\,\vec{k}\,)\,\mathrm{m;}\,\,\,\,\,
\vec{b}=(-2\,\vec{\imath}+3\,\vec{\jmath}-2\,\vec{k}\,)\,\mathrm{m;}\,\,\,\,\,
\vec{c}=(-\vec{\imath}+\vec{\jmath}+\vec{k}\,)\,\mathrm{m}\,

4) \,\,\,\vec{a}=(3\,\vec{\jmath}+3\,\vec{k}\,)\,\mathrm{m;}\,\,\,\,\,
\vec{b}=(\vec{\imath}+2\,\vec{\jmath}+2\,\vec{k}\,)\,\mathrm{m;}\,\,\,\,\,
\vec{c}=(2\,\vec{\imath}+\vec{\jmath}-2\,\vec{k}\,)\,\mathrm{m}\,

16 Longitud de una sombra (Ex.Nov/11)

En cierto sistema de coordenadas cartesianas, el suelo viene definido por el plano de ecuación x-2y+2z=0\, y en él se halla clavada una varilla rectilínea representada por el vector \overrightarrow{OP}=(4\,\vec{\imath}-3\,\vec{\jmath}\,)\,\mathrm{m}. Suponiendo que es mediodía y los rayos solares inciden perpendicularmente al suelo, ¿cuál es la longitud de la sombra que la varilla proyecta sobre el suelo?

Herramientas:

Herramientas personales
TOOLBOX
LANGUAGES
licencia de Creative Commons
Aviso legal - Acerca de Laplace