Entrar Página Discusión Historial Go to the site toolbox

2.1. Ejemplo de movimiento plano en 3D

De Laplace

Contenido

1 Enunciado

Una partícula describe un movimiento según la ecuación horaria

\vec{r}(t) = 4A\cos^2(\omega t)\vec{\imath}+5A\cos(\omega t)\,\mathrm{sen}(\omega t)\vec{\jmath}-3A\cos^2(\omega t)\vec{k}
  1. Calcule la velocidad y la aceleración instantáneas de este movimiento.
  2. Determine el parámetro arco como función del tiempo y escriba la ecuación de la trayectoria como función del parámetro arco.
  3. Calcule el triedro de Frenet asociado a la trayectoria en cada instante, así como las componentes intrínsecas de la aceleración
  4. Halle el radio de curvatura y la posición del centro de curvatura en cada instante.

2 Velocidad y aceleración

2.1 Velocidad

Derivando una vez el vector de posición respecto al tiempo:

\vec{v}=\frac{\mathrm{d}\vec{r}}{\mathrm{d}t}=-8A\omega\,\mathrm{sen}(\omega t)\cos(\omega t)\vec{\imath}+5A\omega\left(\cos^2(\omega t)-\,\mathrm{sen}^2(\omega t)\right)\vec{\jmath}+6A\omega\,\mathrm{sen}(\omega t)\cos(\omega t)\vec{k}

Podemos simplificar esta expresión ayuda de las funciones trigonométricas del ángulo doble

\vec{v}=-4A\omega\,\mathrm{sen}(2\omega t)\vec{\imath}+5A\omega\cos(2\omega t)\vec{\jmath}+3A\omega\,\mathrm{sen}(2\omega t)\vec{k}

2.2 Aceleración

Derivando de nuevo obtenemos el vector aceleración:

\vec{a}=\frac{\mathrm{d}\vec{v}}{\mathrm{d}t}=-8A\omega^2\cos(2\omega t)\vec{\imath}-10A\omega^2\,\mathrm{sen}(2\omega t)\vec{\jmath}+6A\omega^2\cos(2\omega t)\vec{k}

3 Parámetro arco

La celeridad nos da la derivada del parámetro arco respecto al tiempo. Hallamos el módulo de la velocidad

v = \sqrt{16A^2\omega^2\,\mathrm{sen}^2(2\omega t)+25A^2\omega^2\cos^2(2\omega t)+9A^2\omega^2\,\mathrm{sen}^2(2\omega t)}=5A\omega

Resulta que el movimiento es uniforme y el parámetro natural es proporcional al tiempo

\dot{s}=5A\omega   \Rightarrow   s = 5A\omega t\,

y la ecuación de la trayectoria parametrizada naturalmente es

\vec{r}(t) = 4A\cos^2\left(\frac{s}{5A}\right)\vec{\imath}+5A\cos\left(\frac{s}{5A}\right)\,\mathrm{sen}\left(\frac{s}{5A}\right)\vec{\jmath}-3A\cos^2\left(\frac{s}{5A}\right)\vec{k}


4 Triedro de Frenet y componentes intrínsecas

4.1 Vector tangente

Obtenemos el vector tangente como el unitario en la dirección de la velocidad

\vec{T}=\frac{\vec{v}}{v}=-\frac{4}{5}\,\mathrm{sen}(2\omega t)\vec{\imath}+\cos(2\omega t)\vec{\jmath}+\frac{3}{5}\,\mathrm{sen}(2\omega t)\vec{k}

4.2 Vector binormal

El binormal lo hallamos normalizando el producto vectorial de la velocidad y la aceleración

\vec{v}\times\vec{a}=\left|\begin{matrix}\vec{\imath} & \vec{\jmath} & \vec{k} \\ -4A\omega\,\mathrm{sen}(2\omega t) & 5A\omega\cos(2\omega t) & 3A\omega\,\mathrm{sen}(2\omega t) \\ -8A\omega^2\cos(2\omega t & -10A\omega^2\,\mathrm{sen}(2\omega t) & 6A\omega^2\cos(2\omega t)\end{matrix}\right|=30A^2\omega^3\vec{\imath}+40A^2\omega^3\vec{k}

Dividiendo este vector por su módulo

\vec{B}=\frac{\vec{v}\times\vec{a}}{|\vec{v}\times\vec{a}|}=\frac{3}{5}\vec{\imath}+\frac{4}{5}\vec{k}

Vemos que resulta un vector constante y por tanto la trayectoria es plana, aunque tenga las tres coordenadas dependientes del tiempo.

El plano que contiene a la trayectoria es el dado por la ecuación vectorial

\vec{B}\cdot(\vec{r}(t)-\vec{r}(0)) = 0   \Rightarrow   3x+4z = 0\,

4.3 Vector normal

Conocidos el vector tangente y el vector binormal, hallamos el vector normal como su producto vectorial

\vec{N}=\vec{B}\times\vec{T}

5 Radio y centro de curvatura

Herramientas:

Herramientas personales
TOOLBOX
LANGUAGES
licencia de Creative Commons
Aviso legal - Acerca de Laplace