Entrar Página Discusión Historial Go to the site toolbox

Velocidad media en un movimiento armónico

De Laplace

1 Enunciado

Una partícula describe un movimiento armónico simple de frecuencia angular ω, pudiéndose mover a lo largo de una recta horizontal. En t = 0 pasa por la posición de equilibrio con una velocidad + v0.

  1. ¿Cuánto vale la velocidad media entre t = 0 y t = T / 4, con T el periodo de oscilación?
  2. ¿Cuánto vale la aceleración en t = T / 4?

2 Velocidad media

La velocidad media de una partícula en un movimiento rectilíneo se calcula como el cociente entre el desplazamiento neto y la duración del intervalo en que se realiza

v_m = \frac{\Delta x}{\Delta t}

En este caso, el intervalo se nos da como dato: es la cuarta parte del periodo

\Delta t = \frac{T}{4}

En un movimiento armónico simple, una partícula que parte del punto de equilibrio en t = 0 alcanza la máxima elongación en T / 4; en T / 2 vuelve a pasar por el origen en 3T / 4 alcanza la distancia máxima por el lado opuesto y en T regresa al origen, completando el ciclo.

Por tanto el desplazamiento entre t = 0 y t = T / 4 es igual a la elongación máxima, es decir a la amplitud.

Δx = A

y la velocidad media será igual a

v_m = \frac{A}{T/4} = \frac{4A}{T}

3 Aceleración

Herramientas:

Herramientas personales
TOOLBOX
LANGUAGES
licencia de Creative Commons
Aviso legal - Acerca de Laplace