Entrar Página Discusión Historial Go to the site toolbox

Triángulo en movimiento helicoidal

De Laplace

Contenido

1 Enunciado

El triángulo de vértices A, B y C, constituye un sólido rígido en movimiento respecto del sistema de referencia fijo OXYZ. De dicho movimiento se conocen los siguientes datos:

  • Los vértices A y B permanecen en todo instante sobre el eje OZ, desplazándose ambos con igual velocidad instantánea: \vec{v}^A =
\vec{v}^B = v(t) \vec{k}.
  • El vértice C se mueve describiendo la hélice Γ, que en el sistema OXYZ está descrita por las ecuaciones paramétricas siguientes (donde A y b son constantes conocidas):
\vec{r}(\theta)= A\cos\theta\vec{\imath}+A\,\mathrm{sen}\,\theta\vec{\jmath}+ \frac{b}{2\pi}\theta\vec{k}
  1. Indique de forma razonada cuál es el eje instantáneo de rotación y mínimo deslizamiento en el movimiento descrito. Determine el vector velocidad angular en términos de los datos expresados en el enunciado.
  2. Exprese la componente normal de la aceleración del vértice C en un instante cualquiera, en función de los datos del enunciado.
  3. Para el caso en que v(t) = v0 (cte.), y b = πA, calcule la aceleración del vértice C. Determine la ley horaria s = s(t) con que el punto C describe su trayectoria.

2 EIRMD

El eje instantáneo de rotación y mínimo deslizamiento se caracteriza porque en cada uno de sus puntos

\vec{v}^I \parallel \vec{\omega}

Por otro lado, tenemos que, dados dos puntos cualesquiera del sólido

\vec{v}^B = \vec{v}^A + \vec{\omega}\times\overrightarrow{AB}

En este caso en concreto tenemos que las velocidades de A y B son iguales por lo que

\vec{v}^A = \vec{v}^B \qquad\Rightarrow\qquad \vec{\omega}\times\overrightarrow{AB}=\vec{0}

Esto quiere decir que \vec{\omega} es paralelo a \overrightarrow{AB} y por tanto

\vec{\omega}=\omega\vec{k}

Pero esta misma dirección es la de las velocidades de A y B

\vec{v}^A = \vec{v}^B = v(t)\vec{k}\parallel \vec{\omega}=\omega \vec{k}

Por tanto el EIRMD no es otro que el el eje que pasa por A y B: el eje Z.

La velocidad de deslizamiento, común a todos los puntos del sólido, será igual a la componente vertical de la velocidad de A o B

v_d = v^A=v(t)\,

Para determinar el vector velocidad angular del sólido, tendremos en cuenta que

\vec{v}^C=\vec{v}^O + \vec{\omega}\times\overrightarrow{OC}=v(t)\vec{k} + \omega\vec{k}\times\left(A\cos\theta\vec{\imath}+A\,\mathrm{sen}\,\theta\vec{\jmath}+ \frac{b}{2\pi}\theta\vec{k}\right)=-\omega A\,\mathrm{sen}\,\theta\vec{\imath}+\omega A\cos\theta\vec{\jmath}+v(t)\vec{k}

pero también

\vec{v}^C=\frac{\mathrm{d}\vec{r}^C}{\mathrm{d}t}=\frac{\mathrm{d}\vec{r}^C}{\mathrm{d}\theta}\frac{\mathrm{d}\theta}{\mathrm{d}t}=
\left(-A\,\mathrm{sen}\,\theta\vec{\imath}+A\cos\theta\vec{\jmath}+\frac{b}{2\pi}\vec{k}\right)\dot{\theta}

e igualando componentes en ambas expresiones, se llega a

\vec{\omega}=\omega\vec{k}=\dot{\theta}\vec{k}=\frac{2\pi v(t)}{b}\vec{k}

3 Aceleración normal

La aceleración normal de C es igual a

\vec{a}^C_n = \frac{(v^C)^2}{R_\kappa}\vec{N}

siendo Rc el radio de curvatura de la trayectoria.

La celeridad de una partícula en un movimiento helicoidal de un sólido es

v^C = \sqrt{v_d^2 + \omega^2d^2}

siendo d la distancia de la partícula al eje. Esta distancia es igual a A en este caso. Sustituyendo los valores de la velocidad de deslizamiento y la velocidad angular, obtenemos la rapidez

v^C = \sqrt{v^2+ \left(\frac{2\pi v}{b}\right)^2A^2} = \frac{v}{b}\sqrt{(2\pi A)^2 + b^2}

El radio de curvatura de una hélice no es igual a A, el radio del cilindro sobre el que se encuentra, sino que es igual a

R_\kappa= A + \frac{b^2}{4\pi^2A}=\frac{(2\pi A)^2+b^2}{(2\pi)^2A}

Reuniendo ambos resultados obtenemos el módulo de la aceleración normal de C

a^C_n = \frac{((2\pi A)^2 + b^2)(2\pi)^2 Av^2}{b^2((2\pi A)^2 + b^2)}=\frac{(2\pi)^2 A v^2}{b^2}


4 Aceleración y ley horaria

4.1 Aceleración

Si v(t) = v0 la celeridad del punto C es

v^C = \frac{\sqrt{(2\pi A)^2+b^2}}{b}v_0=\mathrm{cte}

Si la celeridad es constante, el movimiento de C es uniforme y su aceleración tangencial nula

\vec{a}^C_t = \frac{\mathrm{d}v^C}{\mathrm{d}t}\vec{T}=\vec{0}

y por tanto toda la aceleración es normal, siendo su valor el que ya conocemos

\vec{a}^C = \vec{a}^C_n = -\frac{4\pi^2v^2A}{b^2}\left(\cos\theta\vec{\imath}+\,\mathrm{sen}\,\theta\vec{\jmath}\right)

4.2 Ley horaria

La ley horaria es inmediata, puesto que la celeridad es constante

\frac{\mathrm{d}s}{\mathrm{d}t}=v^C = \frac{\sqrt{(2\pi A)^2+b^2}}{b}v_0   \Rightarrow   s=s_0+ \frac{\sqrt{(2\pi A)^2+b^2}}{b}v_0 t

También podemos dar como ley horaria la variación del parámetro θ con el tiempo. Para ello observamos que

\vec{v}^C=\frac{\mathrm{d}\vec{r}^C}{\mathrm{d}t}=\frac{\mathrm{d}\vec{r}^C}{\mathrm{d}\theta}\frac{\mathrm{d}\theta}{\mathrm{d}t}=
\left(-A\,\mathrm{sen}\,\theta\vec{\imath}+A\cos\theta\vec{\jmath}+\frac{b}{2\pi}\vec{k}\right)\dot{\theta}

Si igualamos la componente z a la velocidad de deslizamiento

\frac{b}{2\pi}\dot{\theta}=v_0\qquad\Rightarrow\qquad \theta=\theta_0+2\pi\frac{v_0 t}{b}

cumpliéndose la relación

s = \sqrt{b^2+(2\pi A)^2}\frac{\theta}{2\pi}

Herramientas:

Herramientas personales
TOOLBOX
LANGUAGES
licencia de Creative Commons
Aviso legal - Acerca de Laplace