1.12. Ejemplo de construcción de una base
De Laplace
Contenido |
1 Enunciado
Dados los vectores
Construya una base ortonormal dextrógira, tal que
- El primer vector vaya en la dirección de
- El segundo esté contenido en el plano definido por y
- El tercero sea perpendicular a los dos anteriores, y orientado según la regla de la mano derecha.
2 Primer vector
Obtenemos el primer vector normalizando el vector , esto es, hallando el unitario en su dirección y sentido, lo que se consigue dividiendo este vector por su módulo
Hallamos el módulo de
por lo que
3 Segundo vector
El segundo vector debe estar en el plano definido por y , por lo que debe ser una combinación lineal de ambos
además debe ser ortogonal a (y por tanto, a )
y debe ser unitario
El procedimiento sistemático consiste en hallar la componente de normal a y posteriormente normalizar el resultado.
La proyección normal la calculamos con ayuda del doble producto vectorial
Calculamos el primer producto vectorial
Hallamos el segundo
Dividiendo por el módulo de \vec{v} al cuadrado y cambiando el signo obtenemos la componente normal
\vec{a}_n =