Entrar Página Discusión Historial Go to the site toolbox

Cinemática del tiro parabólico

De Laplace

Contenido

1 Enunciado

Supóngase el movimiento de un proyectil, dado en coordenadas cartesianas por

x=(v_0\cos\alpha)t\,        y=0\,        z=(v_0\,\mathrm{sen}\,\alpha)t-\frac{1}{2}gt^2
  1. Determine el vector de posición, la velocidad y la aceleración en cada instante.
  2. Calcule la celeridad y el vector tangente en el instante inicial, en el instante en que se encuentra a mayor altura y en el momento en que vuelve a impactar con el suelo.
  3. Halle la aceleración tangencial y la aceleración normal, así como el vector unitario normal en los tres instantes anteriores.
  4. Calcule el radio de curvatura y el centro de curvatura en los mismos tres instantes.

2 Posición, velocidad y aceleración

2.1 Vector de posición

Empleando la base cartesiana

\vec{r}=x\vec{\imath}+y\vec{\imath}+z\vec{k}=(v_0\cos\alpha)t\vec{\imath}+\left((v_0\,\mathrm{sen}\,\alpha)t-\frac{1}{2}gt^2\right)\vec{k}

2.2 Velocidad

Derivando el vector de posición respecto al tiempo

\vec{v}=\dot{\vec{r}}=(v_0\cos\alpha)\vec{\imath}+\left(v_0\,\mathrm{sen}\,\alpha-gt\right)\vec{k}

2.3 Aceleración

Derivamos la velocidad instantánea respecto al tiempo

\vec{a}=\dot{\vec{v}}=-g\vec{k}

La aceleración en este movimiento es constante e igual a la de la gravedad, como corresponde a que la partícula se encuentra en caída libre.

3 Celeridad y vector tangente

Los tres instantes en que debemos calcular las diferentes magnitudes son:

Instante inicial
La partícula despega en t1 = 0.
Punto de máxima altura
La máxima altura se alcanza cuando z tiene un máximo, esto es, cuando la componente z de la velocidad es nula
0 = \frac{\mathrm{d}z}{\mathrm{d}t}=v_z = v_0\,\mathrm{sen}\,\alpha-gt   \Rightarrow    t_2 = \frac{v_0\,\mathrm{sen}\,\alpha}{g}
Punto de impacto
el proyectil choca de nuevo con el suelo cuando z = 0, lo que ocurre en el instante
(v_0\,\mathrm{sen}\,\alpha)t-\frac{1}{2}gt^2=0   \Rightarrow    t_3=\frac{2v_0\,\mathrm{sen}\,\alpha}{g} = 2t_2

El tiempo que tarda en impactar es el doble del que tarda en llegar al punto más alto, como corresponde a que el movimiento es simétrico respecto a este punto, que es el vértice de la parábola.

La posiciones, velocidades y aceleraciones, en estos tres instantes las hallamos sustituyendo en las ecuaciones anteriores

Instante inicial
\vec{r}_1=\vec{0}        \vec{v}_1=v_0\cos\alpha\vec{\imath}+v_0\,\mathrm{sen}\,\alpha\vec{k}        \vec{a}_1=-g\vec{k}
Punto de máxima altura
\vec{r}_2=\frac{v_0^2\,\mathrm{sen}\,\alpha\cos\alpha}{g}\vec{\imath}+\frac{v_0^2\,\mathrm{sen}^2\alpha}{2g}\vec{k}        \vec{v}_2=v_0\cos\alpha\vec{\imath}        \vec{a}_2=-g\vec{k}
Punto de impacto
\vec{r}_3=\frac{2v_0^2\,\mathrm{sen}\,\alpha\cos\alpha}{g}\vec{\imath}        \vec{v}_3=v_0\cos\alpha\vec{\imath}-v_0\,\mathrm{sen}\,\alpha\vec{k}        \vec{a}_3=-g\vec{k}

3.1 Celeridad

la celeridad es el módulo de la velocidad

v = |\vec{v}| = \sqrt

Herramientas:

Herramientas personales
TOOLBOX
LANGUAGES
licencia de Creative Commons
Aviso legal - Acerca de Laplace