Entrar Página Discusión Historial Go to the site toolbox

Material magnético lineal

De Laplace

(Diferencias entre revisiones)
(Definición)
(Susceptibilidad magnética)
Línea 9: Línea 9:
De la definición se tiene que la susceptibilidad es una cantidad adimensional.
De la definición se tiene que la susceptibilidad es una cantidad adimensional.
 +
La susceptibilidad depende de las propiedades del material: estructura electrónica y atómica, densidad, temperatura,… No depende del propio campo aplicado (en caso contrario, el material sería no lineal).
 +
En su forma más general, la susceptibilidad es un tensor, representable por una matriz
 +
<center><math>\chi_m=\begin{pmatrix}\chi_{xx} & \chi_{xy} & \chi_{xz} \\ \chi_{yx} & \chi_{yy} & \chi_{yz} \\ \chi_{zx} & \chi_{zy} & \chi_{zz} \end{matrix}</math></center>
===Permeabilidad===
===Permeabilidad===

Revisión de 12:27 10 abr 2009

Contenido

1 Definición

Un material magnético lineal es aquel en el que la magnetización, \mathbf{M}, es proporcional alcampo magnético \mathbf{H}

\mathbf{M} = \chi_m \mathbf{H}\,

1.1 Susceptibilidad magnética

La constante de proporcionalidad χm se denomina la susceptibilidad magnética del material.

De la definición se tiene que la susceptibilidad es una cantidad adimensional.

La susceptibilidad depende de las propiedades del material: estructura electrónica y atómica, densidad, temperatura,… No depende del propio campo aplicado (en caso contrario, el material sería no lineal).

En su forma más general, la susceptibilidad es un tensor, representable por una matriz

No se pudo entender (Falta el ejecutable de <strong>texvc</strong>. Por favor, lea <em>math/README</em> para configurarlo.): \chi_m=\begin{pmatrix}\chi_{xx} & \chi_{xy} & \chi_{xz} \\ \chi_{yx} & \chi_{yy} & \chi_{yz} \\ \chi_{zx} & \chi_{zy} & \chi_{zz} \end{matrix}

1.2 Permeabilidad

. Para los medios lineales, el campo magnético \mathbf{B} es también proporcional al campo magnético \mathbf{H}

\mathbf{B} = \mu_0(\mathbf{H}+\mathbf{M}) = \mu_0(1+\chi_m)\mathbf{H} = \mu_0\mu_r \mathbf{H} = \mu\mathbf{H}

La cantidad μr = 1 + χm es la denominada permeabilidad relativa del medio, mientras que μ = μ0μr es la permeabilidad absoluta.

Dependiendo del signo de χm, los materiales lineales se dividen en dos grupos: diamagnéticos y paramagnéticos.

1.2.1 Diamagnéticos

Artículo completo: Diamagnético

Poseen una susceptibilidad negativa. En estos materiales, el campo se ve reducido por efecto de la magnetización inducida, que se opone al campo externo. Para casi todos los diamagnéticos |\chi_m|\ll 1 y puede aproximarse \mu\simeq \mu_0.

1.2.2 Paramagnéticos

Artículo completo: Paramagnético

Tienen una susceptibilidad positiva. En los materiales paramagnéticos la magnetización refuerza al campo externo. La mayoría de los medios paramagnéticos tienen una susceptibilidad muy pequeña y \mu\simeq \mu_0. No obstante, existen sustancias paramagnéticas con muy alta susceptibilidad; estas sustancias, a bajas temperaturas se transforman en ferromagnéticas.

Herramientas:

Herramientas personales
TOOLBOX
LANGUAGES
licencia de Creative Commons
Aviso legal - Acerca de Laplace