Entrar Página Discusión Historial Go to the site toolbox

Cinética de un cono (CMR)

De Laplace

(Diferencias entre revisiones)
(Página creada con '==Enunciado== Se tiene un cono homogéneo, de radio de la base R, altura H y masa m distribuida uniformemente. # Localice la posición del centro de masas del cono empleando un …')
Línea 9: Línea 9:
## Calcule la fuerza y el momento que es necesario aplicar en O para mantener el cono en la rotación anterior. ¿Hay algún caso en que se anulen?
## Calcule la fuerza y el momento que es necesario aplicar en O para mantener el cono en la rotación anterior. ¿Hay algún caso en que se anulen?
<center>[[Archivo:cono-solido-ejes.png|200px]]</center>
<center>[[Archivo:cono-solido-ejes.png|200px]]</center>
 +
==Centro de masas==
 +
Por la simetría del sistema el CM debe estar en <math>x=0</math>, <math>y = 0</math>, es decir, sobre el eje OZ. La altura a la que se halla el CM la calculamos como
 +
 +
<math>z_G=\frac{1}{m}\int_{m} z\,\mathrm{d}m</math>
 +
 +
Los elementos de masa los construimos dividiendo el cono en discos horizontales de radio r y espesor diferencial dz
 +
 +
<center><math>\mathrm{d}m=\rho\,\mathrm{d}V=\rho\,\pi r^2 \,\mathrm{d}z</math></center>
 +
 +
La relación entre el radio de cada disco y su altura lo da el que la generatriz sea una recta
 +
 +
<center><math>\frac{r}{z}= \frac{R}{H}\qquad\Rightarrow\qquad r = \frac{zR}{H}</math></center>
 +
 +
Lo que nos da la integral
 +
 +
<math>z_G=\frac{1}{m}\int_{0}^H \frac{\rho\pi z^3 R^2}{H^2}\,\mathrm{d}z=\frac{\rho\pi \R^2 H^2}{4m}</math>
 +
 +
La densidad de masa la relacionamos con la masa a través del volumen que podemos calcular de la misma manera
 +
 +
<center><math>m=\rho\int_0^H \frac{\rho\pi z^2 R^2}{H^2}\,\mathrm{d}z = \frac{\rho\pi R^2H}{3}</math></center>
 +
 +
lo que nos da
 +
 +
<center><math>z = \frac{3}{4}H</math></center>
 +
 +
El CM se encuentra a 3/4 de la altura respecto del vértice y 1/4 respecto de la base.

Revisión de 09:36 12 ene 2021

1 Enunciado

Se tiene un cono homogéneo, de radio de la base R, altura H y masa m distribuida uniformemente.

  1. Localice la posición del centro de masas del cono empleando un sistema de ejes en el que el cono tiene su vértice en el origen de coordenadas y el eje del cono es el OZ.
  2. Calcule los momentos de inercia respecto al eje del cono, OZ, y los ejes ortogonales OY y OX
  3. Halle el momento de inercia respecto a dos ejes, paralelos a OX y OY por el centro de masas.
  4. Supongamos que el cono se hace girar con velocidad angular constante Ω alrededor de una generatriz, que se toma como eje OZ2.
    1. ¿Cuánto vale su momento cinético respecto al vértice del cono, O?
    2. ¿Cuánto vale su energía cinética?
    3. Calcule la fuerza y el momento que es necesario aplicar en O para mantener el cono en la rotación anterior. ¿Hay algún caso en que se anulen?

2 Centro de masas

Por la simetría del sistema el CM debe estar en x = 0, y = 0, es decir, sobre el eje OZ. La altura a la que se halla el CM la calculamos como

z_G=\frac{1}{m}\int_{m} z\,\mathrm{d}m

Los elementos de masa los construimos dividiendo el cono en discos horizontales de radio r y espesor diferencial dz

\mathrm{d}m=\rho\,\mathrm{d}V=\rho\,\pi r^2 \,\mathrm{d}z

La relación entre el radio de cada disco y su altura lo da el que la generatriz sea una recta

\frac{r}{z}= \frac{R}{H}\qquad\Rightarrow\qquad r = \frac{zR}{H}

Lo que nos da la integral

z_G=\frac{1}{m}\int_{0}^H \frac{\rho\pi z^3 R^2}{H^2}\,\mathrm{d}z=\frac{\rho\pi \R^2 H^2}{4m}

La densidad de masa la relacionamos con la masa a través del volumen que podemos calcular de la misma manera

m=\rho\int_0^H \frac{\rho\pi z^2 R^2}{H^2}\,\mathrm{d}z = \frac{\rho\pi R^2H}{3}

lo que nos da

z = \frac{3}{4}H

El CM se encuentra a 3/4 de la altura respecto del vértice y 1/4 respecto de la base.

Herramientas:

Herramientas personales
TOOLBOX
LANGUAGES
licencia de Creative Commons
Aviso legal - Acerca de Laplace