Entrar Página Discusión Historial Go to the site toolbox

Superposición de dos y tres señales

De Laplace

(Diferencias entre revisiones)
(Segundo caso)
(Segundo caso)
Línea 44: Línea 44:
Como en el apartado anterior, escribimos el seno como un coseno
Como en el apartado anterior, escribimos el seno como un coseno
-
<math>y_2 = A \,\mathrm{sen}\,(\omega t+kx)=A\cos\left(\omega t + k x - \frac{\pi}{2}\right)</math>
+
<center><math>y_2 = A \,\mathrm{sen}\,(\omega t+kx)=A\cos\left(\omega t + k x - \frac{\pi}{2}\right)</math> </center>
y la transformación de sumas en productos, lo que nos da
y la transformación de sumas en productos, lo que nos da

Revisión de 21:33 10 mar 2009

Contenido

1 Enunciado

Considere los casos de superposición siguientes

  1. y_1= A \cos(\omega t - kx)\qquad y_2 = A\,\mathrm{sen}\,(\omega t-kx)
  2. y_1= A \cos(\omega t - kx)\qquad y_2 = A \,\mathrm{sen}\,(\omega t+kx)
  3. y_1= A\cos(\omega t - kx)\qquad y_2 = -2A\,\mathrm{sen}\,(\omega t)\,\mathrm{sen}\,(k x)
  4. y_1= 4A\cos(\omega t - kx)\qquad y_2 = 3A\,\mathrm{sen}\,(\omega t-kx)\qquad y_3 = 5A\cos(\omega t + kx )

Para cada uno de los casos, determine la ecuación de la señal resultante, ¿es una onda viajera o una estacionaria?

2 Solución

2.1 Primer caso

Debemos sumar las señales

y_1= A \cos(\omega t - kx)\,        y_2 = A\,\mathrm{sen}\,(\omega t-kx)

Ambas representan señales viajando hacia la izquierda, con la misma frecuencia, por lo que su suma será otra onda viajera, cuya amplitud dependerá del desfase.

Para sumarlas de forma sencilla las escribimos ambas como cosenos. Aplicando la relación trigonométrica

\mathrm{sen}\left(\alpha\right)=\cos\left(\alpha-\frac{\pi}{2}\right)

las señales quedan como

y_1= A \cos(\omega t - kx)\,        y_2 = A\cos\left(\omega t-kx-\frac{\pi}{2}\right)

Aplicando ahora la relación

\cos(\alpha)+\cos(\beta)=2\cos\left(\frac{\alpha+\beta}{2}\right)\cos\left(\frac{\alpha-\beta}{2}\right)

la superposición es

y = y_1+y_2=2A\cos\left(\frac{\pi}{4}\right)\cos\left(\omega t-kx-\frac{\pi}{4}\right)=\sqrt{2}A \cos\left(\omega t-kx-\frac{\pi}{4}\right)
Resulta una onda viajera, de amplitud \sqrt{2}A (aproximadamente vez y media de la amplitud de cada onda), y con un desfase inicial de π/4.

2.2 Segundo caso

En el segundo caso

y_1= A \cos(\omega t - kx)\,        y_2 = A \,\mathrm{sen}\,(\omega t+kx)

se trata de sumar dos ondas de la misma amplitud pero que se propagan en direcciones diferentes. Por ello, su suma va a consistir en una onda estacionaria.

Como en el apartado anterior, escribimos el seno como un coseno

y_2 = A \,\mathrm{sen}\,(\omega t+kx)=A\cos\left(\omega t + k x - \frac{\pi}{2}\right)

y la transformación de sumas en productos, lo que nos da

y=y_1+y_2=A \cos(\omega t - kx)+A\cos\left(\omega t + k x - \frac{\pi}{2}\right) = 2A\cos\left(k x - \frac{\pi}{4}\right)\cos\left(\omega t - \frac{\pi}{4}\right)
Esta es la ecuación de una onda estacionaria, con amplitud dependiente de la posición
A(x) = 2A\cos\left(k x - \frac{\pi}{4}\right)

que alcanza el valor máximo de 2. Vemos que el efecto de introducir una fase simplemente traslada la posición de los nodos y el desfase de la oscilación de cada punto, pero produce el mismo efecto de onda estacionaria.

2.3 Tercer caso

y_1= A\cos(\omega t - kx)\qquad y_2 = -2A\,\mathrm{sen}\,(\omega t)\,\mathrm{sen}\,(k x)

2.4 Cuarto caso

y_1= 4A\cos(\omega t - kx)\qquad y_2 = 3A\,\mathrm{sen}\,(\omega t-kx)\qquad y_3 = 5A\cos(\omega t + kx )

Herramientas:

Herramientas personales
TOOLBOX
LANGUAGES
licencia de Creative Commons
Aviso legal - Acerca de Laplace