Barra apoyada en bloque
De Laplace
(Diferencias entre revisiones)
Línea 21: | Línea 21: | ||
y suma de momentos igual a cero | y suma de momentos igual a cero | ||
- | <center><math>\vec{M}_O = (-x_g (mg)+F_A |\overrightarrow{OA}) | + | <center><math>\vec{M}_O = (-x_g (mg)+F_A |\overrightarrow{OA}|)\vec{k}=(-6.0+F_A)\vec{k}\qquad\Rightarrow\qquad F_A=6.0\,\mathrm{N}</math></center> |
y de aquí | y de aquí | ||
Revisión de 16:33 1 feb 2018
Contenido |
1 Enunciado
Una barra homogénea de 10 N de peso y 150 cm de longitud está articulada por uno de sus extremos, O. La barra está apoyada sin rozamiento sobre un bloque cuadrado homogéneo de h = 60cm de lado y 9.6 N de peso fijado al suelo, de manera que su borde está a de O. Sea A el punto del bloque donde se apoya la barra.
- Determine la fuerza que se ejerce sobre la barra en O y en A.
Suponga ahora que el bloque no está soldado al suelo, sino solo apoyado en él, y es mantenido en su posición por la fuerza de rozamiento estático.
- Calcule la resultante de las fuerzas de reacción que el suelo ejerce sobre el bloque.
- Determine el valor mínimo del coeficiente de rozamiento μ para que el sistema se quede en equilibrio.
- Halle el momento resultante de las fuerzas de reacción del suelo sobre el bloque respecto a la esquina B de éste.
2 Fuerzas sobre la barra
La fuerza en O tiene dos componentes independientes, pero la de A, donde no hay rozamiento, es ortogonal a la barra
Por estar en equilibrio, la suma de fuerzas es nula
y suma de momentos igual a cero
y de aquí
En forma vectorial