Entrar Página Discusión Historial Go to the site toolbox

Oscilador amortiguado

De Laplace

(Diferencias entre revisiones)
Antonio (Discusión | contribuciones)
(Nueva página: ==Enunciado== Un oscilador amortiguado experimenta una fuerza de rozamiento viscoso <math>\mathbf{F}_r=-b \mathbf{v}</math>, de forma que su ecuación de movimiento, para un movimient...)
Edición más nueva →

Revisión de 20:24 8 feb 2009

Contenido

1 Enunciado

Un oscilador amortiguado experimenta una fuerza de rozamiento viscoso \mathbf{F}_r=-b \mathbf{v}, de forma que su ecuación de movimiento, para un movimiento unidimensional es

ma =-b v-kx\,
  1. Demuestre que la energía mecánica
    E=\frac{1}{2}mv^2+\frac{1}{2}kx^2
    es una función decreciente con el tiempo.
  2. Si buscamos una solución particular de la forma x = Ae − λt, calcule los dos valores que puede tener λ. La solución general será una combinación de las dos posibilidades:
    x = A_1 \mathrm{e}^{-\lambda_1 t}+A_2 \mathrm{e}^{-\lambda_2 t}\,
    con A1 y A2 dos constantes a determinar mediante las condiciones iniciales.
  3. ¿Cuál es el máximo valor de b para que haya oscilaciones? ¿cómo es el movimiento si b supera ese valor?
  4. Considere el caso particular de una partícula de masa m=1\,\mathrm{kg} se encuentra sujeta a un muelle de constante k=1\,\mathrm{N}/\mathrm{m}, existiendo un rozamiento b. Determine la posición en cualquier instante si se impulsa desde la posición de equilibrio con velocidad v_0=0.6\,\mathrm{m}/\mathrm{s} si (a) b = 1.6\,\mathrm{N}\cdot\mathrm{s}/\mathrm{m}$; (b) b = 2.5\,\mathrm{N}\cdot\mathrm{s}/\mathrm{m}, (c) b = 2.0\,\mathrm{N}\cdot\mathrm{s}/\mathrm{m}.

2 Solución

2.1 Disipación de la energía

2.2 Soluciones exponenciales

2.3 Oscilaciones amortiguadas

2.4 Casos particulares

Herramientas:

Herramientas personales
TOOLBOX
LANGUAGES
licencia de Creative Commons
Aviso legal - Acerca de Laplace