Entrar Página Discusión Historial Go to the site toolbox

Leyes de conservación en polares y cilíndricas

De Laplace

(Diferencias entre revisiones)
Línea 92: Línea 92:
Para la acimutal tenemos
Para la acimutal tenemos
 +
<center><math>2m\dot{\rho}\dot{\varphi}=\frac{2m\sqrt{AB}\dot{\rho}}{\rho^2}</math></center>
 +
 +
y
 +
 +
<center><math>\rho\ddot{\varphi}=\rho\frac{\mathrm{d}\ }{\mathrm{d}t}\left(\frac{\sqrt{AB}{\rho^2}\right)=-\frac{2\sqrt{AB}\dot{\rho}}{\rho^2}</math></center>
 +
 +
Si los sumamos
 +
 +
<center><math>F_\varphi=\frac{2m\sqrt{AB}\dot{\rho}}{\rho^2}-\frac{2m\sqrt{AB}\dot{\rho}}{\rho^2} = 0</math></center>
 +
 +
Por tanto, la componente acimutal de la fuerza también es nula en todo instante. Esto quiere decir que la fuerza, como vector, es nula en todo momento
 +
 +
<center><math>\vec{F}=F_\rho\vec{u}_\rho+F_\varphi\vec{u}_\varphi = 0\vec{u}_\rho+0\vec{u}_\varphi=\vec{0}</math></center>
 +
 +
Si la fuerza es siempre nula, la cantidad de movimiento es una constante, aunque su expresión en polares parezca depender del tiempo.
==Segundo caso==
==Segundo caso==
[[Categoría:Problemas de energía y leyes de conservación (GIE)]]
[[Categoría:Problemas de energía y leyes de conservación (GIE)]]

Revisión de 09:41 28 nov 2015

Contenido

1 Enunciado

Una partícula de masa m describe el movimiento expresado en cilíndricas

\rho = \sqrt{A+Bt^2}\qquad\qquad \varphi =
\mathrm{arctg}\left(t\sqrt{B/A}\right)\qquad\qquad z = 0

Determine si se conserva la cantidad de movimiento, el momento cinético respecto al origen de coordenadas y la energía cinética. En su caso, halle el valor de las constantes.

Responda a las mismas preguntas para el movimiento helicoidal

\rho = A\qquad\qquad \varphi = \omega t\qquad\qquad z = v_0t

2 Fórmulas generales

2.1 Cantidad de movimiento

La cantidad de movimiento de una partícula es el producto de su masa por su velocidad. La expresión de ésta, en coordenadas cilíndricas, es

\vec{v}=\dot{\rho}\vec{u}_\rho+\rho\dot{\varphi}\vec{u}_\varphi+\dot{z}\vec{k}

por lo que la cantidad de movimiento es

\vec{p}=m\dot{\rho}\vec{u}_\rho+m\rho\dot{\varphi}\vec{u}_\varphi+m\dot{z}\vec{k}

En el caso particular de movimiento en el plano OXY, la expresión se reduce a la de coordenadas polares

\vec{p}=m\dot{\rho}\vec{u}_\rho+m\rho\dot{\varphi}\vec{u}_\varphi

2.2 Momento cinético

\vec{L}_O es igual al momento de la cantidad de movimiento, siendo el vector de posición en cilíndricas

\vec{r}=\rho\vec{u}_\rho+z\vec{k}

por lo que resulta

\vec{L}_O=\vec{r}\times\vec{p}=\left|\begin{matrix} \vec{u}_\rho & \vec{u}_\varphi & \vec{k} \\ \rho & 0 & z \\ \dot{\rho} & \rho\dot{\varphi} & \dot{z}\end{matrix}\right|=-mz\rho\dot{\varphi}\vec{u}_\rho+m(z\dot{\rho}-\rho\dot{z})\vec{u}_\varphi + \rho^2\dot{\varphi}\vec{k}

En el caso de movimiento en el plano OXY el momento se reduce a

\vec{L}_O=m\rho^2\varphi\vec{k}

2.3 Energía cinética

La energía cinética, que es una cantidad escalar tiene una expresión más simple

K=\frac{1}{2}m|\vec{v}|^2=\frac{1}{2}m\left(\dot{\rho}^2+\rho^2\dot{\varphi}^2+\dot{z}^2\right)

y en polares

K=\frac{1}{2}m|\vec{v}|^2=\frac{1}{2}m\left(\dot{\rho}^2+\rho^2\dot{\varphi}^2\right)

3 Primer caso

El primer caso

\rho = \sqrt{A+Bt^2}\qquad\qquad \varphi =
\mathrm{arctg}\left(t\sqrt{B/A}\right)\qquad\qquad z = 0

es uno de movimiento plano, por lo que se pueden emplear coordenadas polares. A la hora de derivar, conviene observar que

\dot{\rho}=\frac{Bt}{\sqrt{A+B t^2}}=\frac{Bt}{\rho}

y que

\dot{\varphi}=\sqrt{B}{A}\,\frac{1}{1+(B/A)t^2}=\frac{\sqrt{AB}}{\rho^2}

Estas dos relaciones permiten simplificar los cálculos que siguen.

3.1 Cantidad de movimiento

Sustituimos en la expresión de la cantidad de movimiento y queda

\vec{p}=\frac{mBt}{\rho}\vec{u}_\rho+\frac{m\sqrt{AB}}{\rho}\vec{u}_\varphi

Esta expresión parece que no es constante (aparece explícitamente t) pero hay que tener en cuenta que también ρ y los vectores de la base dependen del tiempo.

La derivada de la cantidad de movimiento es igual a la fuerza, que en polares se expresa

\vec{F}=m\left(\ddot{\rho}-\rho\dot{\varphi}^2\right)\vec{u}_\rho+m(2\dot{\rho}\dot{\varphi}+\rho\ddot{\varphi})\vec{u}_\varphi

Para la componente radial tenemos

m\ddot{\rho}=\frac{\mathrm{d}\ }{\mathrm{d}t}\left(\frac{mBt}{\rho}\right)=\frac{mB}{\rho}-\frac{mBt\dot{\rho}}{\rho^2}=\frac{mB}{\rho}-\frac{mB^2t^2}{\rho^3}

y

\rho\dot{\varphi}^2 = \frac{m AB}{\rho^3}

Restando estos dos términos

m(\ddot{\rho}-\rho\dot{\varphi}^2)=\frac{mB}{\rho}-\frac{mB^2t^2}{\rho^3}-\frac{m AB}{\rho^3}=\frac{mB}{\rho}-\frac{mB(A+Bt^2)}{\rho^3}=\frac{mB}{\rho}-\frac{mB}{\rho}=0

Es decir, la aceleración radial es nula en todo momento.

Para la acimutal tenemos

2m\dot{\rho}\dot{\varphi}=\frac{2m\sqrt{AB}\dot{\rho}}{\rho^2}

y

No se pudo entender (Falta el ejecutable de <strong>texvc</strong>. Por favor, lea <em>math/README</em> para configurarlo.): \rho\ddot{\varphi}=\rho\frac{\mathrm{d}\ }{\mathrm{d}t}\left(\frac{\sqrt{AB}{\rho^2}\right)=-\frac{2\sqrt{AB}\dot{\rho}}{\rho^2}

Si los sumamos

F_\varphi=\frac{2m\sqrt{AB}\dot{\rho}}{\rho^2}-\frac{2m\sqrt{AB}\dot{\rho}}{\rho^2} = 0

Por tanto, la componente acimutal de la fuerza también es nula en todo instante. Esto quiere decir que la fuerza, como vector, es nula en todo momento

\vec{F}=F_\rho\vec{u}_\rho+F_\varphi\vec{u}_\varphi = 0\vec{u}_\rho+0\vec{u}_\varphi=\vec{0}

Si la fuerza es siempre nula, la cantidad de movimiento es una constante, aunque su expresión en polares parezca depender del tiempo.

4 Segundo caso

Herramientas:

Herramientas personales
TOOLBOX
LANGUAGES
licencia de Creative Commons
Aviso legal - Acerca de Laplace