Entrar Página Discusión Historial Go to the site toolbox

Masa que cae sobre resorte

De Laplace

(Diferencias entre revisiones)
Línea 70: Línea 70:
<center><math>\frac{1}{2}m_1v_{1f}^2 = m_1g h_f\qquad\Rightarrow\qquad h_f = \frac{v_{1f}^2}{2g}=\frac{4.2^2}{2\times 9.8}\mathrm{m}=0.90\,\mathrm{m}</math></center>
<center><math>\frac{1}{2}m_1v_{1f}^2 = m_1g h_f\qquad\Rightarrow\qquad h_f = \frac{v_{1f}^2}{2g}=\frac{4.2^2}{2\times 9.8}\mathrm{m}=0.90\,\mathrm{m}</math></center>
==Máxima compresión==
==Máxima compresión==
 +
Tras la colisión, la plataforma adquiere también una cierta velocidad. Ésta se obtiene del sistema de ecuaciones del apartado anterior y el resultado es
 +
 +
<center><math>v_{2f}=\frac{2m_1}{m_1+m_2}v_{1i}=\frac{2\times 0.1}{0.1+0.4}\times 7.0\,\frac{\mathrm{m}}{\mathrm{s}}=2.8\,\frac{\mathrm{m}}{\mathrm{s}}</math></center>
 +
 +
Esta velocidad inicial comprime el muelle. La máxima compresión se alcanza cuando toda la energía cinética se almacena como energía potencial elástica
 +
 +
<center><math>\frac{1}{2}m_2v_{2f]^2 + \frac{1}{2}k\cdot 0^2 = \frac{1}{2}m_2\cdot 0^2 + \frac{1}{2}kA^2</math></center>
 +
 +
es decir
 +
 +
<center><math>\frac{1}{2}m_2v_{2f}^2=\frac{1}{2}kA^2 \qquad \Rightarrow\qquad A = v_{2f}\sqrt{\frac{m_2}{k}}</math></center>
 +
 +
siendo su valor
 +
 +
<center><math>A = 2.8\sqrt{\frac{0.4}{1960}}\,\mathrm{m}=0.04\,\mathrm{m}=4.0\,\mathrm{cm}</math></center>
 +
==Energía disipada==
==Energía disipada==
==Máxima compresión en el caso inelástico==
==Máxima compresión en el caso inelástico==
[[Categoría:Problemas de energía y leyes de conservación (GIE)]]
[[Categoría:Problemas de energía y leyes de conservación (GIE)]]

Revisión de 23:46 27 ene 2014

Contenido

1 Enunciado

Se tiene una plataforma de masa m_2=0.40\,\mathrm{kg} situada sobre un resorte de constante k=1960\,\mathrm{N}/\mathrm{m} y longitud natural l_0=10\,\mathrm{cm}.

  1. Calcule cuánto se comprime el resorte debido al peso de la masa, en la posición de equilibrio.

Sobre esta plataforma se deja caer una masa m_1= 0.10\,\mathrm{kg}, soltándola sin velocidad inicial desde una altura h_0= 2.5\,\mathrm{m} sobre la plataforma

  1. Calcule la velocidad que tiene la masa m1 justo antes de impactar con la plataforma.

Si la colisión es perfectamente elástica,

  1. Calcule la nueva altura que alcanza la masa m1 tras la colisión.
  2. Calcule cuánto es el máximo que se comprime el resorte por efecto del golpe en la plataforma.

Si la colisión, en vez de ser elástica, es completamente inelástica,

  1. ¿Cuánta energía se pierde en la colisión?
  2. ¿Cuánto se comprime como máximo el resorte tras la colisión?

Tómese g=9.8\,\mathrm{m}/\mathrm{s}^2.

Archivo:caida-masa-resorte.png

2 Compresión del resorte

Puesto que todas las fuerzas y velocidades van a ser verticales, el problema es unidimensional y podemos emplear cantidades escalares con signo. Consideraremos una velocidad y una fuerza como positivas cuando van hacia abajo y negativas si van hacia arriba.

La presencia de la masa comprime el muelle por acción de su peso. En el equilibrio se compensa la acción del peso con la fuerza recuperadora elástica:

m_2g-k\,\Delta x=0

lo que da la compresión del muelle

\Delta x = \frac{m_2g}{k}

Sustituyendo los valores numéricos

\Delta x=\frac{0.40\times 9.8}{1960}\,\mathrm{m}=0.002\,\mathrm{m}=2.0\,\mathrm{mm}

3 Velocidad de impacto

En la caída de la masa 1 se conserva la energía mecánica. En esta caída la energía potencial se transforma en cinética, cumpliéndose

\frac{1}{2}m_1\overbrace{v_0^2}^{=0}+m_1gh_0=\frac{1}{2}mv_{1i}^2+mg\cdot 0

de donde

m_1gh_0=\frac{1}{2}m_1v_{1i}^2\qquad\Rightarrow\qquad v_{1i}=\sqrt{2gh}

siendo su valor numérico

v_{1i}=\sqrt{2\times 9.8\times 2.5}\,\frac{\mathrm{m}}{\mathrm{s}}=7.0\,\frac{\mathrm{m}}{\mathrm{s}}

4 Nueva altura máxima

Cuando la masa 1 impacta con la 2 tenemos una colisión elástica en la que se conserva la cantidad de movimiento

m_1v_{1i}+m_2\cdot 0 = m_1v_{1f}+m_2v_{2f}\,

y por ser elástica el coeficiente de restitución es la unidad

1=C_R = -\frac{v_{2f}-v_{1f}}{v_{2i}-v_{1i}}\qquad\Rightarrow\qquad v_{2f}-v_{1f}=v_{1f}

Esto es un sistema de dos ecuaciones con dos incógnitas, cuya solución para la velocidad de la masa 1 justo tras el choque es

v_{1f}=\frac{m_1-m_2}{m_1+m_2}v_{1i}=\frac{0.1-0.4}{0.1+0.4}7.0\,\frac{\mathrm{m}}{\mathrm{s}}=-4.2\,\frac{\mathrm{m}}{\mathrm{s}}

La velocidad es negativa porque la masa rebota hacia arriba. La nueva altura máxima la hallamos aplicando de nuevo la ley de conservación de la energía mecánica

\frac{1}{2}m_1v_{1f}^2 = m_1g h_f\qquad\Rightarrow\qquad h_f = \frac{v_{1f}^2}{2g}=\frac{4.2^2}{2\times 9.8}\mathrm{m}=0.90\,\mathrm{m}

5 Máxima compresión

Tras la colisión, la plataforma adquiere también una cierta velocidad. Ésta se obtiene del sistema de ecuaciones del apartado anterior y el resultado es

v_{2f}=\frac{2m_1}{m_1+m_2}v_{1i}=\frac{2\times 0.1}{0.1+0.4}\times 7.0\,\frac{\mathrm{m}}{\mathrm{s}}=2.8\,\frac{\mathrm{m}}{\mathrm{s}}

Esta velocidad inicial comprime el muelle. La máxima compresión se alcanza cuando toda la energía cinética se almacena como energía potencial elástica

No se pudo entender (Falta el ejecutable de <strong>texvc</strong>. Por favor, lea <em>math/README</em> para configurarlo.): \frac{1}{2}m_2v_{2f]^2 + \frac{1}{2}k\cdot 0^2 = \frac{1}{2}m_2\cdot 0^2 + \frac{1}{2}kA^2

es decir

\frac{1}{2}m_2v_{2f}^2=\frac{1}{2}kA^2 \qquad \Rightarrow\qquad A = v_{2f}\sqrt{\frac{m_2}{k}}

siendo su valor

A = 2.8\sqrt{\frac{0.4}{1960}}\,\mathrm{m}=0.04\,\mathrm{m}=4.0\,\mathrm{cm}

6 Energía disipada

7 Máxima compresión en el caso inelástico

Herramientas:

Herramientas personales
TOOLBOX
LANGUAGES
licencia de Creative Commons
Aviso legal - Acerca de Laplace