Entrar Página Discusión Historial Go to the site toolbox

Preguntas de test de sistemas de partículas

De Laplace

(Diferencias entre revisiones)
(Colisión tridimensional)
Línea 6: Línea 6:
:'''D''' <math>v_0(3\vec{\imath}-\vec{\jmath})</math>.
:'''D''' <math>v_0(3\vec{\imath}-\vec{\jmath})</math>.
===Solución===
===Solución===
-
La respuesta correcta es la '''<span style="color:red;">C<span>'''.
+
La respuesta correcta es la '''<span style="color:red;">D<span>'''.
 +
 
 +
En una colisión, elástica o inelástica, todas las fuerzas son internas, por lo que se conserva la cantidad de movimiento del sistema. Por tanto, para hallar la velocidad final de la segunda masa nos basta con igualar la cantidad de movimiento inicial a la final
 +
 
 +
<center><math>m_1\vec{v}_{1i}+m_2\overbrace{\vec{v}_{2i}}^{=\vec{0}}=m_1\vec{v}_{1f}+m_2\vec{v}_{2f}</math></center>
 +
 
 +
Despejando
 +
 
 +
<center><math>\vec{v}_{2f}=\frac{m_1\vec{v}_{1i}-m_1\vec{v}_{1f}}{m_2}</math></center>
 +
 
 +
y sustituyendo
 +
 
 +
<center><math>\vec{v}_{2f}=\frac{m(8v_0\vec{\imath})-m(2v_0\vec{\imath}+2v_0\vec{\jmath})}{2m}= \frac{6v_0\vec{\imath}-2v_0\vec{\jmath}}{2}=v_0\left(3\vec{\imath}-\vec{\jmath}\right)</math></center>
==Arrastre de una masa==
==Arrastre de una masa==

Revisión de 17:30 6 dic 2013

Contenido

1 Colisión tridimensional

Una proyectil de masa m que se mueve con velocidad \vec{v}_{1i} = 8v_0\vec{\imath} colisiona con un blanco inmóvil de masa 2m. El proyectil tiene tras la colisión una velocidad \vec{v}_{1f}=2v_0(\vec{\imath}+\vec{\jmath}) ¿Cuánto vale la velocidad final de la segunda masa?

A v_0(6\vec{\imath}-2\vec{\jmath}).
B Es nula.
C Depende de si la colisión es elástica o inelástica.
D v_0(3\vec{\imath}-\vec{\jmath}).

1.1 Solución

La respuesta correcta es la D.

En una colisión, elástica o inelástica, todas las fuerzas son internas, por lo que se conserva la cantidad de movimiento del sistema. Por tanto, para hallar la velocidad final de la segunda masa nos basta con igualar la cantidad de movimiento inicial a la final

m_1\vec{v}_{1i}+m_2\overbrace{\vec{v}_{2i}}^{=\vec{0}}=m_1\vec{v}_{1f}+m_2\vec{v}_{2f}

Despejando

\vec{v}_{2f}=\frac{m_1\vec{v}_{1i}-m_1\vec{v}_{1f}}{m_2}

y sustituyendo

\vec{v}_{2f}=\frac{m(8v_0\vec{\imath})-m(2v_0\vec{\imath}+2v_0\vec{\jmath})}{2m}= \frac{6v_0\vec{\imath}-2v_0\vec{\jmath}}{2}=v_0\left(3\vec{\imath}-\vec{\jmath}\right)

2 Arrastre de una masa

Se tiene un sistema de 2 masas de 4 kg cada una, atadas por una cuerda ideal, inextensible y sin masa, que pasa por una polea también ideal. La masa 1 está sobre una superficie horizontal sin rozamiento, mientras que la 2 cuelga verticalmente.

Archivo:Dos-masas-mesa.png

2.1 Pregunta 1

Suponiendo el sistema de ejes de la figura, ¿cuánto vale la aceleración de cada masa en el instante indicado, en m/s²?

A \vec{a}_1 = 4.9\vec{\imath}, \vec{a}_2 = -9.8\vec{k}
B \vec{a}_1 = 4.9\vec{\imath}, \vec{a}_2 = -4.9\vec{k}
C \vec{a}_1 = 9.8\vec{\imath}, \vec{a}_2 = -9.8\vec{k}
D \vec{a}_1 = \vec{0}, \vec{a}_2 = -9.8\vec{k}

2.1.1 Solución

La respuesta correcta es la C.

2.2 Pregunta 2

¿Cuál de las cuatro figuras representa correctamente la posición y velocidad del centro de masas C del sistema de dos pesas, en el instante representado?

Archivo:2mm-a.png Archivo:2mm-b.png
A B
Archivo:2mm-c.png Archivo:2mm-d.png
C D

2.2.1 Solución

La respuesta correcta es la C.

2.3 Pregunta 3

¿Cuánto vale la aceleración del centro de masas en el mismo instante?

A \vec{a}_C = 4.9\left(\vec{\imath}-\vec{k}\right)
B Es nula.
C \vec{a}_C =-9.8\vec{k}
D \vec{a}_C = 2.5\left(\vec{\imath}-\vec{k}\right)

2.3.1 Solución

La respuesta correcta es la C.

3 Centro de masas de una L

Se tiene un sólido en forma de L con los brazos de igual longitud h, siendo M la masa total del sólido, distribuida uniformemente.

Archivo:Barra-L.png

Considerando un sistema de ejes con origen en el vértice y ejes OX y OY paralelos a los brazos de la L, ¿dónde se encuentra en centro de masas del sólido?

A En (h/4)(\vec{\imath}+\vec{\jmath})
B En el origen de coordenadas.
C En (h/3)(\vec{\imath}+\vec{\jmath})
D En (h/2)(\vec{\imath}+\vec{\jmath})

3.1 Solución

La respuesta correcta es la C.

4 Impacto horizontal sobre un bloque

Para medir una velocidad de un proyectil se dispara una bala de masa 4 gramos sobre un bloque de madera de 1 kg, inicialmente en reposo, quedándose la bala empotrada en él. El bloque reposa sobre una superficie horizontal, sobre la cual el coeficiente de rozamiento (estático y dinámico) es μ = 0.25. Como consecuencia del impacto, el bloque (con bala) se desliza una distancia de 20 cm hasta pararse.

Archivo:bala-masa.png

4.1 Pregunta 1

¿Qué velocidad tenía aproximadamente el bloque justo tras el impacto?

A 2 m/s
B 70 cm/s
C 20 cm/s.
D 1 m/s.

4.1.1 Solución

La respuesta correcta es la C.

4.2 Pregunta 2

¿Qué velocidad llevaba la bala justo antes del impacto?

A 500 m/s
B 250 m/s
C 50 m/s
D 16 m/s

4.2.1 Solución

La respuesta correcta es la C.

4.3 Pregunta 3

¿Qué proporción de la energía inicial se perdió en la colisión de la bala con el bloque?

A 0.0%
B 50.0%
C 99.6%
D 0.4%

4.3.1 Solución

La respuesta correcta es la C.

5 Explosión de un proyectil

Un proyectil de masa 4 kg se mueve horizontalmente con velocidad de 6 m/s. En un momento dado explota en dos fragmentos, uno de los cuales tiene una masa de 1 kg y sale despedido hacia atrás con velocidad −6 m/s.

5.1 Pregunta 1

¿Cuál es la velocidad del segundo fragmento tras la explosión?

A 18 m/s
B 6 m/s
C 0 m/s
D 10 m/s

5.1.1 Solución

La respuesta correcta es la C.

5.2 Pregunta 2

En este proceso la energía cinética del sistema…

A Disminuye.
B Permanece constante.
C Cambia de signo.
D Aumenta.

5.2.1 Solución

La respuesta correcta es la D.

Herramientas:

Herramientas personales
TOOLBOX
LANGUAGES
licencia de Creative Commons
Aviso legal - Acerca de Laplace