Entrar Página Discusión Historial Go to the site toolbox

Propiedades de un sistema de tres partículas

De Laplace

(Diferencias entre revisiones)
Antonio (Discusión | contribuciones)
(Página creada con '==Enunciado== Considere un sistema de tres partículas de masas <math>m_1=100\,\mathrm{g}</math>, <math>m_2=200\,\mathrm{g}</math>, <math>m_3=100\,\mathrm{g}</math> que en un in…')
Edición más nueva →

Revisión de 17:23 24 ene 2013

Contenido

1 Enunciado

Considere un sistema de tres partículas de masas m_1=100\,\mathrm{g}, m_2=200\,\mathrm{g}, m_3=100\,\mathrm{g} que en un instante dado están situadas en las posiciones de la figura y moviéndose con la velocidad indicada, siendo la rapidez de cada una de ellas 10\,\mathrm{cm}/\mathrm{s}. Suponga que la masa 1 y la 3 está unidas por un resorte de longitud natural nula y constante k=100\,\mathrm{N}/\mathrm{m}. Para el instante indicado

  1. Halle la posición del centro de masas (CM) del sistema.
  2. Calcule la cantidad de movimiento del sistema.
  3. Halle el momento cinético respecto al origen y respecto al CM.
  4. Calcule la energía cinética del sistema respecto a un sistema fijo y respecto al CM.
  5. Halle la aceleración de cada masa y la del CM.
  6. Halle la derivada respecto al tiempo del momento cinético (calculado respecto al origen).
  7. Calcule la derivada respecto al tiempo de la energía cinética del sistema (calculada respecto a un sistema fijo).
Archivo:tres-particulas-resorte.png

2 Posición del centro de masas

3 Cantidad de movimiento

4 Momento cinético

4.1 Respecto al origen

4.2 Respecto al CM

5 Energía cinética

5.1 Respecto a un sistema fijo

5.2 Respecto al CM

6 Aceleraciones

7 Derivada del momento cinético

8 Derivada de la energía cinética

Herramientas:

Herramientas personales
TOOLBOX
LANGUAGES
licencia de Creative Commons
Aviso legal - Acerca de Laplace