Entrar Página Discusión Historial Go to the site toolbox

Conservación de magnitudes en movimiento curvo

De Laplace

(Diferencias entre revisiones)
Antonio (Discusión | contribuciones)
(Página creada con '==Enunciado== Una partícula de masa <math>m</math> describe el movimiento plano <center><math>\rho = A\,\mathrm{sen}(\Omega t)\qquad\varphi = \Omega t\qquad\qquad\ t \in(0,\pi…')
Edición más nueva →

Revisión de 18:47 24 nov 2012

Contenido

1 Enunciado

Una partícula de masa m describe el movimiento plano

\rho = A\,\mathrm{sen}(\Omega t)\qquad\varphi = \Omega t\qquad\qquad\ t \in(0,\pi/\Omega)
  1. Calcule la fuerza que actúa sobre la partícula en cualquier instante del intervalo.
  2. Halle el impulso que experimenta entre t = 0 y t = π / (2Ω).
  3. Demuestre que el momento cinético de la partícula respecto al origen no se conserva, pero respecto al punto \vec{r}_1 = (A/2)\vec{\jmath} sí.
  4. Calcule la energía cinética de la partícula. ¿Se conserva esta cantidad?

2 Fuerza

3 Impulso

4 Momento cinético

5 Energía cinética

Herramientas:

Herramientas personales
TOOLBOX
LANGUAGES
licencia de Creative Commons
Aviso legal - Acerca de Laplace