Entrar Página Discusión Historial Go to the site toolbox

Ejemplo de movimiento helicoidal (GIE)

De Laplace

(Diferencias entre revisiones)
Línea 67: Línea 67:
==Aceleración==
==Aceleración==
 +
Podemos hallar la aceleración a partir de su expresión en cartesianas
 +
 +
<center><math>\vec{a}=\ddot{x}\vec{\imath}+\ddot{y}\vec{\jmath}+\ddot{z}\vec{k}</math></center>
 +
 +
o la correspondiente en cilíndricas
 +
 +
==Radio de curvatura==
==Radio de curvatura==
[[Categoría:Problemas de cinemática de la partícula (GIE)]]
[[Categoría:Problemas de cinemática de la partícula (GIE)]]
[[Categoría:Problemas de cinemática tridimensional (GIE)]]
[[Categoría:Problemas de cinemática tridimensional (GIE)]]

Revisión de 16:12 12 oct 2011

Contenido

1 Enunciado

El movimiento de un pájaro en una corriente térmica es aproximadamente helicoidal, compuesto de un movimiento ascensional y uno de giro alrededor del eje de subida, de forma que la velocidad en cada punto de la trayectoria puede escribirse como

\vec{v}=\vec{v}_0+\vec{\omega}_0\times\vec{r}

siendo

\vec{v}_0 = v_0\vec{k}\qquad \vec{\omega}_0=\omega_0 \vec{k}

dos vectores constantes. Si la posición inicial es \vec{r}_0=A\vec{\imath}

  1. Determine la velocidad en cada punto expresada en la base de coordenadas cilíndricas.
  2. Determine las ecuaciones horarias ρ = ρ(t), \varphi=\varphi(t) y z = z(t). ¿Cuánto vale el paso de rosca de la hélice, esto es, lo que sube en el tiempo que da una vuelta alrededor del eje?
  3. Calcule la aceleración del movimiento, así como sus componentes intrínsecas en cada punto del movimiento.
  4. Determine el radio de curvatura de la trayectoria en cualquier instante.

2 Velocidad

La velocidad en cada punto la obtenemos simplemente sustituyendo en la expresión indicada

\vec{v}=\vec{v}_0+\vec{\omega}_0\times\vec{r}

donde \vec{r} es el vector de posición del pájaro, que en coordenadas cilíndricas se expresa

\vec{r}=\rho\vec{u}_\rho+z\vec{u}_z

Sustituyendo nos queda

\vec{v}=v_0\vec{k}+\omega_0\vec{k}\times\left(\rho\vec{u}_\rho+z\vec{u}_z\right)

La base asociada a las coordenadas cilíndricas forma un ortonormal y dextrógira, por lo que cumple

\vec{k}\times\vec{u}_\rho=\vec{u}_\varphi

y queda la velocidad

\vec{v}=\omega_0\rho\vec{u}_\varphi+v_0\vec{k}

Vemos que posee una componente acimutal (correspondiente al giro) y una vertical, asociada a la ascensión.

3 Ecuaciones horarias

Por otra parte, la velocidad de una partícula, expresada en coordenadas cilíndricas, es

\vec{v}=\dot{\rho}\vec{u}_\rho + \rho\dot{\varphi}\vec{u}_\varphi+\dot{z}\vec{u}_z

Igualando componente a componente, nos quedan las igualdades

\dot{\rho} = 0\qquad \rho\dot{\varphi}=\omega_0\rho\qquad\dot{z}=v_0

La integración de estas tres ecuaciones es inmediata, ya que cada una de las derivadas es una constante o nula.

\rho=\rho_0\qquad\varphi=\omega_0t + \varphi_0\qquad z=v_0t+z_0

Los valores de las constantes de integración los obtenemos de la posición inicial. sabemos que en t = 0 la partícula se encuentra en

\vec{r}_0=A\vec{\imath}

que corresponde a las coordenadas cilíndricas

\rho_0 = A\qquad\varphi_0 = 0\qquad z_0=0

por tanto las ecuaciones horarias del movimiento son

\rho=A\qquad\varphi=\omega_0t\qquad z=v_0t

En coordenadas cartesianas, estas ecuaciones horarias quedan

x = \rho \cos(\varphi) = A\cos(\omega_0t)\qquad y = \rho\,\mathrm{sen}(\varphi) = A\,\mathrm{sen}(\omega_0t)\qquad z = v_0t

4 Aceleración

Podemos hallar la aceleración a partir de su expresión en cartesianas

\vec{a}=\ddot{x}\vec{\imath}+\ddot{y}\vec{\jmath}+\ddot{z}\vec{k}

o la correspondiente en cilíndricas


5 Radio de curvatura

Herramientas:

Herramientas personales
TOOLBOX
LANGUAGES
licencia de Creative Commons
Aviso legal - Acerca de Laplace