Entrar Página Discusión Historial Go to the site toolbox

Derivación e integración en física (GIE)

De Laplace

(Diferencias entre revisiones)
(Derivadas)
(Derivadas)
Línea 72: Línea 72:
En todos los casos la velocidad es de 120 km/h, pero cuanto más pequeño es el intervalo de tiempo considerado, más nos acercamos al ideal de medir la velocidad en un instante dado.
En todos los casos la velocidad es de 120 km/h, pero cuanto más pequeño es el intervalo de tiempo considerado, más nos acercamos al ideal de medir la velocidad en un instante dado.
-
[[Archivo:velocidad-instantanea-1d.png|right|320px]]
+
Se define entonces la velocidad instantánea como el cociente entre la distancia recorrida y el tiempo empleado en recorrerla, cuando ambas cantidades se hacen muy pequeñas, reduciéndose a diferenciales
-
 
+
-
Definimos entonces la velocidad instantánea en una dimensión como el límite de la velocidad media cuando el intervalo de tiempo tiende a cero (se reduce a un instante)
+
<center><math>v\equiv\frac{\mathrm{d}x}{\mathrm{d}t}=\lim_{\Delta t\to 0}\frac{\Delta x}{\Delta t}</math></center>
<center><math>v\equiv\frac{\mathrm{d}x}{\mathrm{d}t}=\lim_{\Delta t\to 0}\frac{\Delta x}{\Delta t}</math></center>
-
Matemáticamente, esto quiere decir que la velocidad instantánea es la derivada respecto al tiempo de la posición instantánea. En mecánica, una derivada respecto al tiempo suele representarse con un punto sobre la magnitud
+
Este concepto se generaliza a toda derivada de una función f respecto a una variable u: El cociente entre el diferencial de la función y el de la variable
-
 
+
-
<center><math>v=\frac{\mathrm{d}x}{\mathrm{d}t} = \dot{x}</math></center>
+
-
 
+
-
De esta definición se deduce que:
+
-
[[Archivo:velocidad-integral.png|right|320px]]
+
<center><math>f'(u) = \frac{\mathrm{d}f}{\mathrm{d}u} = = \frac{f(u+du)-f(u)}{\mathrm{d}u}</math></center>
-
* Las unidades de la velocidad instantánea son la de una distancia dividida por un tiempo, en el SI m/s, aunque otras unidades como km/h son de uso frecuente.
+
Vemos que en una derivada tan importante es qué se deriva como con respecto a qué se deriva, ya que una misma magnitud puede depender de muchas otras (una fuerza puede depender del tiempo o de la posición; la energía de la presión, volumen o temperatura). Por tanto, en física no tiene mucho sentido hablar de &ldquo;la derivada de la magnitud A&rdquo;. Será siempre &ldquo;la derivada de la magnitud A '''respecto a la magnitud s'''&rdquo;. Por ello, es siempre preferible usar la notación de Leibniz, como el cociente entre diferenciales <math>\mathrm{d}A/\mathrm{d}s</math>
-
* La velocidad tiene un signo: es positiva si el valor de <math>x</math> está aumentando (nos movemos hacia la derecha del punto de referencia) y es negativa si está disminuyendo (nos movemos hacia la izquierda).
+
-
* La velocidad puede ser nula. En ese caso se dice que la partícula se encuentra en un estado de reposo instantáneo.
+
-
* La velocidad no es igual al espacio partido por tiempo. Es la derivada de la posición respecto al tiempo.
+
-
* En la gráfica de la posición frente al tiempo, la velocidad representa la pendiente de la recta tangente a la curva <math>x(t)</math> en el punto <math>(t,x(t))</math>.
+
-
* Si el estado es de reposo instantáneo esta tangente es horizontal. En ese momento usualmente la posición alcanza un máximo o un mínimo.
+
==Integrales==
==Integrales==
==Ecuaciones diferenciales==
==Ecuaciones diferenciales==
[[Categoría:Herramientas matemáticas (GIE)]]
[[Categoría:Herramientas matemáticas (GIE)]]

Revisión de 14:14 24 ago 2011

Contenido

1 Introducción

El objeto de este tema no una exposición de las técnicas de derivación e integración, que se suponen conocidas. Se trata aquí de dar una interpretación intuitiva del significado de estas operaciones en física, a fin de facilitar tanto la compresión de las fórmulas como de saber cuándo y dónde deben utilizarse.

Lo que sigue no pretende en absoluto ser riguroso, es más, en muchos aspectos se aleja del rigor matemático, si con ello se consigue una mejor visualización del significado.

2 Diferenciales

La idea de diferencial es simple:

Un diferencial de una magnitud, dA, es una cantidad muy pequeña de dicha magnitud

Por ejemplo, si estamos considerando el movimiento rectilíneo de una partícula, nos puede interesar el desplazamiento neto, Δx durante un periodo finito Δt. Pero si el movimiento es irregular, nos puede interesar un análisis más detallado del movimiento. En ese caso consideraríamos intervalos de tiempo muy cortos, en los cuales se realizan desplazamientos minúsculos. A esos intervalos, que serían instantes, los denotamos por dt y a los desplazamientos pequeños por dx y los llamamos diferenciales.

La pregunta que surge de manera inmediata es ¿cómo de pequeño? ¿pequeño comparado con qué? Una magnitud no es grande o pequeña en sentido absoluto; lo es siempre relativamente a alguna referencia.

A la hora de considerar una cantidad como diferencial, lo hacemos siempre comparándola con los valores típicos de las magnitudes que aparecen en el sistema que se está estudiando. Como criterio, podemos considerar que si es más de tres órdenes de magnitud más pequeño (menos de una milésima, preferible aun menor) se puede aproximar como diferencial. Por ejemplo, una distancia \Delta x = 1\,\mathrm{m}, ¿puede considerarse como diferencial? En un problema en el que estudiamos el movimiento de una pelota de ping-pong obviamente no. Pero, si lo que estamos estudiando es el movimiento de la Tierra alrededor del Sol, sí que se puede, muy justificadamente, considerar como diferencial.

Un diferencial no tiene por qué referirse al incremento de una variable.

En los casos dt y dx sí puede considerarse como incrementos muy pequeños en las variables t y x.

Supongamos ahora, que nos piden describir la temperatura de una habitación. Puesto que esta temperatura no será homogénea en general, no tiene mucho sentido hablar de la temperatura del conjunto. Es más lógico dividir la habitación en trozos lo suficientemente pequeños como para que cada uno tenga una temperatura concreta. Construimos así elementos de volumen dV, que serían diferenciales, y a los cuales les podemos asignar una temperatura. Estos diferenciales de volumen no corresponden al incremento de ninguna variable. Se trata simplemente de cantidades muy pequeñas de una magnitud. Si nos imaginamos cada elemento de volumen como un pequeño cubito, su volumen sería largo por ancho por alto

\mathrm{d}V = \mathrm{d}x\,\mathrm{d}y\,\mathrm{d}z

es decir, es el producto de tres diferenciales de variables diferentes.

También se pueden definir diferenciales de magnitudes vectoriales. Un desplazamiento en el espacio viene dado por el incremento del vector de posición

\Delta\vec{r} = \Delta x\,\vec{\imath}+\Delta y\,\vec{\jmath}+\Delta z\,\vec{k}

Si consideramos un desplazamiento muy pequeño comparado con el tamaño del sistema obtenemos un diferencial de camino

\mathrm{d}\vec{r} = \mathrm{d} x\,\vec{\imath}+\mathrm{d} y\,\vec{\jmath}+\mathrm{d} z\,\vec{k}

que, de nuevo, es una combinación de los incrementos infinitesimales de tres variables diferentes.

El tamaño de los diferenciales reales, en física, no puede hacerse infinitamente pequeño como en matemáticas. Imaginemos que estudiamos la distribución de temperatura en un baño de agua. Dividimos el agua el elementos de volumen de masa dm. Si consideramos los elementos de volumen tendiendo a ser infinitamente pequeños, llega un momento en que dejan de ser volúmenes de agua, pasando a ser protones, electrones o espacio vacío, para los cuales la temperatura o el propio concepto de agua deja de tener sentido. Por ello, hemos de considerar que un diferencial es una cantidad mucho más pequeña que los valores que aparecen en el problema, pero no tan pequeña que dejen de tener significado.

Cuando tenemos una función de una o varias variables f(u, v,\ldots) y las variables cambian en una cantidad diferencial, el valor de la función f también cambia de manera diferencial

f(u,v,\ldots) \quad\Rightarrow\quad \mathrm{d}f = f(u+\mathrm{d}u,v+\mathrm{d}v,\ldots)-f(u,v,\ldots)

Así obtenemos la regla de que la diferencial de una suma es la suma de diferenciales

f = u +v \quad\Rightarrow\quad \mathrm{d}f = ((u+\mathrm{d}u) +(v+\mathrm{d}v))-(u+v) = \mathrm{d}u+\mathrm{d}v

En el caso de un producto obtenemos

f = uv \quad\Rightarrow\quad \mathrm{d}f = ((u+\mathrm{d}u)(v+\mathrm{d}v))-(uv) = (\mathrm{d}u)v+u(\mathrm{d}v)+(\mathrm{d}u)(\mathrm{d}v)

pero en esta expresión, el último término es mucho más pequeño que los dos primeros. Imaginemos que u y v valen 1, y sus diferenciales valen 0.001, entonces, los dos primeros términos son del orden de la milésima, pero el tercero es del orden de una millonésima 0.001\times 0.001 = 0.000001 y por tanto es despreciable

f = uv \quad\Rightarrow\quad \mathrm{d}f =  (\mathrm{d}u)v+u(\mathrm{d}v)

Este ejemplo, nos muestra que existen categorías entre los diferenciales: de primer orden, de segundo orden -producto de dos-, de tercer orden -producto de tres-,… Cuando el resultado final de una operación es la suma de una cantidad finita con un diferencial, o un diferencial con un diferencial de orden superior, los términos más pequeños son despreciables, quedándonos siempre con el del orden más bajo.

En cuanto a las dimensiones y unidades, el diferencial de una magnitud tiene las mismas que la propia magnitud. Un diferencial de masa, dm se mide en kilogramos y uno de tiempo, dt en segundos.

3 Derivadas

El concepto básica de derivada es el siguiente:

Una derivada es un cociente entre dos cantidades muy pequeñas

El ejemplo más claro para ilustrarlo es el de velocidad instantánea. Cuando decimos que en un instante dado la velocidad es de 120 km/h, ¿qué estamos diciendo exactamente? Evidentemente, no que durante la última hora se han recorrido 120 km, ya que igual sólo se llevan 10 minutos de marcha. Podríamos decir que durante el último minuto se han recorrido 2 km. ya que

\frac{120\,\mathrm{km}}{1\,\mathrm{h}} = \frac{2\,\mathrm{km}}{1\,\mathrm{min}}

Esto ya es más preciso, pero aun no es del todo satisfactorio, ya que en un minuto hay tiempo suficiente a acelerar o frenar. Una mejor aproximación sería afirmar que en el último segundo se ha recorrido (1/30) km = 33.3 m. O podríamos decir que en la última décima de segundo se han recorrido 3.33 m,…

\frac{120\,\mathrm{km}}{1\,\mathrm{h}} = \frac{2\,\mathrm{km}}{1\,\mathrm{min}}= \frac{33.3\,\mathrm{m}}{1\,\mathrm{s}}=\frac{3.33\,\mathrm{m}}{0.1\,\mathrm{s}}=\cdots

En todos los casos la velocidad es de 120 km/h, pero cuanto más pequeño es el intervalo de tiempo considerado, más nos acercamos al ideal de medir la velocidad en un instante dado.

Se define entonces la velocidad instantánea como el cociente entre la distancia recorrida y el tiempo empleado en recorrerla, cuando ambas cantidades se hacen muy pequeñas, reduciéndose a diferenciales

v\equiv\frac{\mathrm{d}x}{\mathrm{d}t}=\lim_{\Delta t\to 0}\frac{\Delta x}{\Delta t}

Este concepto se generaliza a toda derivada de una función f respecto a una variable u: El cociente entre el diferencial de la función y el de la variable

f'(u) = \frac{\mathrm{d}f}{\mathrm{d}u} = = \frac{f(u+du)-f(u)}{\mathrm{d}u}

Vemos que en una derivada tan importante es qué se deriva como con respecto a qué se deriva, ya que una misma magnitud puede depender de muchas otras (una fuerza puede depender del tiempo o de la posición; la energía de la presión, volumen o temperatura). Por tanto, en física no tiene mucho sentido hablar de “la derivada de la magnitud A”. Será siempre “la derivada de la magnitud A respecto a la magnitud s”. Por ello, es siempre preferible usar la notación de Leibniz, como el cociente entre diferenciales dA / ds

4 Integrales

5 Ecuaciones diferenciales

Herramientas:

Herramientas personales
TOOLBOX
LANGUAGES
licencia de Creative Commons
Aviso legal - Acerca de Laplace