Entrar Página Discusión Historial Go to the site toolbox

1.1. Ejemplos de análisis dimensional

De Laplace

(Diferencias entre revisiones)
(Página creada con '==Enunciado== A partir de las relaciones definitorias {| class="bordeado" |- ! Velocidad ! Cantidad de movimiento ! Aceleración ! Fuerza |- | <math>\vec{v}=\frac{\mathrm{d}\ve…')
(Velocidad)
Línea 28: Línea 28:
==Velocidad==
==Velocidad==
 +
La velocidad se define como la derivada de la posición respecto al tiempo. Una derivada no es más que un cociente entre dos cantidades muy pequeñas y por tanto sus dimensiones serán las del numerador divididas por las del denominador, esto es,
 +
 +
<center><math>[v] = \frac{[r]}{[t} = L T^{-1}</math></center>
 +
==Cantidad de movimiento==
==Cantidad de movimiento==
==Aceleración==
==Aceleración==

Revisión de 14:21 8 sep 2010

Contenido

1 Enunciado

A partir de las relaciones definitorias

Velocidad Cantidad de movimiento Aceleración Fuerza
\vec{v}=\frac{\mathrm{d}\vec{r}}{\mathrm{d}t} \vec{p}=m\vec{v} \vec{a}=\frac{\mathrm{d}\vec{v}}{\mathrm{d}t} \vec{F}=\frac{\mathrm{d}\vec{p}}{\mathrm{d}t}
Trabajo Potencia Momento cinético Momento de una fuerza
W=\int\vec{F}\cdot\mathrm{d}\vec{r} P=\frac{\mathrm{d}W}{\mathrm{d}t} \vec{L}=\vec{r}\times\vec{p} \vec{M}=\frac{\mathrm{d}\vec{L}}{\mathrm{d}t}

determine las ecuaciones dimensionales de estas magnitudes, así como sus unidades en el SI en función de las unidades fundamentales de este sistema.

2 Velocidad

La velocidad se define como la derivada de la posición respecto al tiempo. Una derivada no es más que un cociente entre dos cantidades muy pequeñas y por tanto sus dimensiones serán las del numerador divididas por las del denominador, esto es,

[v] = \frac{[r]}{[t} = L T^{-1}

3 Cantidad de movimiento

4 Aceleración

5 Fuerza

6 Trabajo

7 Potencia

8 Momento cinético

9 Momento de una fuerza

Herramientas:

Herramientas personales
TOOLBOX
LANGUAGES
licencia de Creative Commons
Aviso legal - Acerca de Laplace