1.12. Ejemplo de construcción de una base
De Laplace
(→Segundo vector) |
(→Enunciado) |
||
Línea 2: | Línea 2: | ||
Dados los vectores | Dados los vectores | ||
- | <center><math>\vec{v}=\vec{\imath}+2\vec{\jmath}+2\vec{k}</math>{{qquad}}{{qquad}}<math>\vec{a}= | + | <center><math>\vec{v}=\vec{\imath}+2\vec{\jmath}+2\vec{k}</math>{{qquad}}{{qquad}}<math>\vec{a}=6\vec{\imath}+9\vec{\jmath}+6\vec{k}</math></center> |
Construya una base ortonormal dextrógira, tal que | Construya una base ortonormal dextrógira, tal que |
Revisión de 21:53 21 jul 2010
Contenido |
1 Enunciado
Dados los vectores
Construya una base ortonormal dextrógira, tal que
- El primer vector vaya en la dirección de
- El segundo esté contenido en el plano definido por y
- El tercero sea perpendicular a los dos anteriores, y orientado según la regla de la mano derecha.
2 Primer vector
Obtenemos el primer vector normalizando el vector , esto es, hallando el unitario en su dirección y sentido, lo que se consigue dividiendo este vector por su módulo
Hallamos el módulo de
por lo que
3 Segundo vector
El segundo vector debe estar en el plano definido por y , por lo que debe ser una combinación lineal de ambos
además debe ser ortogonal a (y por tanto, a )
y debe ser unitario
El procedimiento sistemático consiste en hallar la componente de normal a y posteriormente normalizar el resultado.
La proyección normal la calculamos con ayuda del doble producto vectorial
Calculamos el primer producto vectorial
Hallamos el segundo
Dividiendo por el módulo de \vec{v} al cuadrado y cambiando el signo obtenemos la componente normal
\vec{a}_n =