Entrar Página Discusión Historial Go to the site toolbox

Cuatro cargas en un rectángulo

De Laplace

(Diferencias entre revisiones)
(Solución)
Línea 18: Línea 18:
<center><math>\mathbf{r}_4-\mathbf{r}_1 = 9\mathbf{u}_x-12\mathbf{u}_y</math>{{tose}}<math>\left|\mathbf{r}_4-\mathbf{r}_1\right| = \sqrt{9^2+12^2}=15</math></center>
<center><math>\mathbf{r}_4-\mathbf{r}_1 = 9\mathbf{u}_x-12\mathbf{u}_y</math>{{tose}}<math>\left|\mathbf{r}_4-\mathbf{r}_1\right| = \sqrt{9^2+12^2}=15</math></center>
 +
<center><math>\mathbf{r}_4-\mathbf{r}_2 = -16\mathbf{u}_x-12\mathbf{u}_y</math>{{tose}}<math>\left|\mathbf{r}_4-\mathbf{r}_2\right| = \sqrt{16^2+12^2}=20</math></center>
<center><math>\mathbf{r}_4-\mathbf{r}_2 = -16\mathbf{u}_x-12\mathbf{u}_y</math>{{tose}}<math>\left|\mathbf{r}_4-\mathbf{r}_2\right| = \sqrt{16^2+12^2}=20</math></center>
[[Categoría:Problemas de electrostática en el vacío]]
[[Categoría:Problemas de electrostática en el vacío]]

Revisión de 16:32 8 ene 2010

1 Enunciado

Una carga puntual q_1 = 108\,\mathrm{nC} se encuentra situada en el origen de coordenadas. En x=25\,\mathrm{mm}, y=z=0\, se halla una segunda carga q2. En x=16\,\mathrm{mm}, y=12\,\mathrm{mm} se encuentra una tercera carga q3.

Calcule el valor que deben tener q2 y q3 si, ocupando las posiciones indicadas, se desea que sea nula la fuerza sobre una carga q_4=10\,\mathrm{nC} situada en x=9\,\mathrm{mm}, y=-12\,\mathrm{mm}, z = 0.

2 Solución

La fuerza sobre la carga q4 es, de acuerdo con la ley de Coulomb y el principio de superposición

\mathbf{F}_4 = \frac{q_4}{4\pi\varepsilon_0}\left(\frac{q_1(\mathbf{r}_4-\mathbf{r}_1)}{|\mathbf{r}_4-\mathbf{r}_1|^3}+\frac{q_2(\mathbf{r}_4-\mathbf{r}_2)}{|\mathbf{r}_4-\mathbf{r}_2|^3}+\frac{q_3(\mathbf{r}_4-\mathbf{r}_3)}{|\mathbf{r}_4-\mathbf{r}_3|^3}\right)

En nuestro caso, midiendo las distancias en milímetros, tenemos que


\mathbf{r}_1=\mathbf{0}\,        \mathbf{r}_2=25\,\mathbf{u}_x        \mathbf{r}_3=16\mathbf{u}_x+12\mathbf{u}_y\,        \mathbf{r}_4=9\mathbf{u}_x-12\mathbf{u}_y

La posición relativa de q4 respecto a las otras tres cargas y las distancias correspondientes son

\mathbf{r}_4-\mathbf{r}_1 = 9\mathbf{u}_x-12\mathbf{u}_y   \Rightarrow   \left|\mathbf{r}_4-\mathbf{r}_1\right| = \sqrt{9^2+12^2}=15


\mathbf{r}_4-\mathbf{r}_2 = -16\mathbf{u}_x-12\mathbf{u}_y   \Rightarrow   \left|\mathbf{r}_4-\mathbf{r}_2\right| = \sqrt{16^2+12^2}=20

Herramientas:

Herramientas personales
TOOLBOX
LANGUAGES
licencia de Creative Commons
Aviso legal - Acerca de Laplace