Una varilla y una carga
De Laplace
(Diferencias entre revisiones)
(→Flujo del campo eléctrico a través de superficie esférica) |
(→Flujo del campo eléctrico a través de superficie esférica) |
||
Línea 11: | Línea 11: | ||
[[Imagen:P2_ii.gif|left]] Tal como se indica en las figuras, adoptaremos un sistema de referencia cartesiano con origen en el centro de la varilla cargada, la cuál va a ser colineal con el eje <math>\ OZ</math>. Además, consideraremos que la carga puntual <math>\ -Q</math> se halla en el eje <math>\ OX</math>. | [[Imagen:P2_ii.gif|left]] Tal como se indica en las figuras, adoptaremos un sistema de referencia cartesiano con origen en el centro de la varilla cargada, la cuál va a ser colineal con el eje <math>\ OZ</math>. Además, consideraremos que la carga puntual <math>\ -Q</math> se halla en el eje <math>\ OX</math>. | ||
- | En este apartado hay que calcular el flujo | + | En este apartado hay que calcular el flujo del campo electrostático <math>\mathbf{E}(\mathbf{r})</math> creado por la distribución de carga formada por la varilla cargada y la carga puntual negativa, a través de una superficie esférica de ecuación <math>\partial \tau: r=a/2</math>. |
[[Categoría:Problemas de electrostática en el vacío]] | [[Categoría:Problemas de electrostática en el vacío]] |
Revisión de 17:22 9 jul 2009
1 Enunciado
Una carga eléctrica Q está uniformemente distribuida a lo largo de un segmento rectilíneo de longitud 2a. A una distancia a del punto medio de dicho segmento y en dirección perpendicular a éste, se halla una carga puntual − Q.- Calcule el flujo del campo eléctrico a través de una superficie esférica de radio a / 2 centrada en el punto medio del segmento cargado (punto O).
- Obtenga la fuerza que actúa sobre la carga puntual.
- Calcule los momentos monopolar y dipolar de la distribución de carga descrita. Proponga expresiones aproximadas para el potencial y el campo eléctrico en puntos suficientemente alejados de la distribución.
- ¿Qué trabajo habría que realizar para mover la carga puntual entre los puntos A al B? (ver figura)
2 Solución
2.1 Flujo del campo eléctrico a través de superficie esférica
Tal como se indica en las figuras, adoptaremos un sistema de referencia cartesiano con origen en el centro de la varilla cargada, la cuál va a ser colineal con el eje . Además, consideraremos que la carga puntual se halla en el eje .En este apartado hay que calcular el flujo del campo electrostático creado por la distribución de carga formada por la varilla cargada y la carga puntual negativa, a través de una superficie esférica de ecuación .