Entrar Página Discusión Historial Go to the site toolbox

Barra apoyada en bloque

De Laplace

(Diferencias entre revisiones)
(Enunciado)
Línea 11: Línea 11:
==Fuerzas sobre la barra==
==Fuerzas sobre la barra==
 +
La fuerza en O tiene dos componentes independientes, pero la de A, donde no hay rozamiento, es ortogonal a la barra
 +
 +
<math>\vec{F}_O=F_{Ox}\vec{\imath}+F_{Oy}\vec{\jmath}\qquad\qquad \vec{F}_A=F_A\left(-0.6\vec{\imath}+0.80\vec{\jmath}\right)</math>
 +
 +
Por estar en equilibrio, la suma de fuerzas es nula
 +
 +
<center><math>F_{Ox}-0.60F_A = 0 \qquad\qquad F_{Oy}+0.80F_A-10 = 0</math></center>
 +
 +
y suma de momentos igual a cero
 +
 +
<center><math>\vec{M}_O = (-x_g (mg)+F_A |\overrightarrow{OA})}\vec{k}=(-6.0+F_A)\vec{k}\qquad\Rightarrow\qquad F_A=6.0\,\mathrm{N}</math></center>
 +
y de aquí
 +
 +
<center><math>F_{Ox}=-F_{Ax}=+0.60F_A=3.6\,\mathrm{N}\qquad\qquad F_{Oy}=-0.80 F_A+10=5.2\,\mathrm{N}</math></center>
 +
 +
En forma vectorial
 +
 +
<center><math>\vec{F}_O=(3.6\vec{\imath}+5.2\vec{\jmath})\,\mathrm{N}\qquad\qquad \vec{F}_A=\left(-3.6\vec{\imath}+4.8\vec{\jmath}\right)\,\mathrm{N}</math></center>
==Fuerza sobre el bloque==
==Fuerza sobre el bloque==
==Coeficiente de rozamiento==
==Coeficiente de rozamiento==
==Momento de las fuerzas de reacción==
==Momento de las fuerzas de reacción==
[[Categoría:Problemas de dinámica del sólido rígido (GIE)]]
[[Categoría:Problemas de dinámica del sólido rígido (GIE)]]

Revisión de 16:33 1 feb 2018

Contenido

1 Enunciado

Una barra homogénea de 10 N de peso y 150 cm de longitud está articulada por uno de sus extremos, O. La barra está apoyada sin rozamiento sobre un bloque cuadrado homogéneo de h = 60cm de lado y 9.6 N de peso fijado al suelo, de manera que su borde está a b=80\,cm de O. Sea A el punto del bloque donde se apoya la barra.

  1. Determine la fuerza que se ejerce sobre la barra en O y en A.

Suponga ahora que el bloque no está soldado al suelo, sino solo apoyado en él, y es mantenido en su posición por la fuerza de rozamiento estático.

  1. Calcule la resultante de las fuerzas de reacción que el suelo ejerce sobre el bloque.
  2. Determine el valor mínimo del coeficiente de rozamiento μ para que el sistema se quede en equilibrio.
  3. Halle el momento resultante de las fuerzas de reacción del suelo sobre el bloque respecto a la esquina B de éste.

2 Fuerzas sobre la barra

La fuerza en O tiene dos componentes independientes, pero la de A, donde no hay rozamiento, es ortogonal a la barra

\vec{F}_O=F_{Ox}\vec{\imath}+F_{Oy}\vec{\jmath}\qquad\qquad \vec{F}_A=F_A\left(-0.6\vec{\imath}+0.80\vec{\jmath}\right)

Por estar en equilibrio, la suma de fuerzas es nula

F_{Ox}-0.60F_A = 0 \qquad\qquad F_{Oy}+0.80F_A-10 = 0

y suma de momentos igual a cero

No se pudo entender (Falta el ejecutable de <strong>texvc</strong>. Por favor, lea <em>math/README</em> para configurarlo.): \vec{M}_O = (-x_g (mg)+F_A |\overrightarrow{OA})}\vec{k}=(-6.0+F_A)\vec{k}\qquad\Rightarrow\qquad F_A=6.0\,\mathrm{N}

y de aquí

F_{Ox}=-F_{Ax}=+0.60F_A=3.6\,\mathrm{N}\qquad\qquad F_{Oy}=-0.80 F_A+10=5.2\,\mathrm{N}

En forma vectorial

\vec{F}_O=(3.6\vec{\imath}+5.2\vec{\jmath})\,\mathrm{N}\qquad\qquad \vec{F}_A=\left(-3.6\vec{\imath}+4.8\vec{\jmath}\right)\,\mathrm{N}

3 Fuerza sobre el bloque

4 Coeficiente de rozamiento

5 Momento de las fuerzas de reacción

Herramientas:

Herramientas personales
TOOLBOX
LANGUAGES
licencia de Creative Commons
Aviso legal - Acerca de Laplace