Entrar Página Discusión Historial Go to the site toolbox

Ángulo entre diagonales

De Laplace

(Diferencias entre revisiones)
Línea 3: Línea 3:
==Solución==
==Solución==
-
Construimos un sistema der eefrencia con origen en un vértice del cubo y con ejes los definidos por las tres aristas contiguas.
+
Construimos un sistema de referencia con origen en un vértice del cubo y con ejes los definidos por las tres aristas contiguas.
Una de las diagonales es la que va del origen al vértice opuesto
Una de las diagonales es la que va del origen al vértice opuesto

Revisión de 15:05 1 oct 2015

1 Enunciado

Calcule el ángulo que forman dos diagonales de un cubo.

2 Solución

Construimos un sistema de referencia con origen en un vértice del cubo y con ejes los definidos por las tres aristas contiguas.

Una de las diagonales es la que va del origen al vértice opuesto

O(0,0,0)\qquad A(b,b,b)\qquad\Rightarrow\qquad \overrightarrow{AB}=b\vec{\imath}+b\vec{\jmath}+b\vec{k}

Otra de las diagonales es la que une otro par de vértices opuestos

B(0,b,0)\qquad C(b,0,b)\qquad\Rightarrow\qquad \overrightarrow{BC}=b\vec{\imath}-b\vec{\jmath}+b\vec{k}

El coseno del ángulo que forman lo calculamos a partir del producto escalar

\cos(\alpha) = \frac{\overrightarrow{OA}\times\overrightarrow{BC}}{\left|\overrightarrow{OA}\right|\left|\overrightarrow{BC}\right|}

El módulo de ambos vectores vale lo mismo

\left|\overrightarrow{OA}\right|=\left|\overrightarrow{BC}\right|=\sqrt{b^2+b^2+b^2}=b\sqrt{3}

y su producto escalar vale

\overrightarrow{OA}\cdot\overrightarrow{BC}=b\cdot b + b\cdot(-b)+b\cdot b=b^2

lo que nos da

\cos(\alpha)=\frac{b^2}{3b^2}=1/3

y de aquí hallamos el ángulo

\alpha=\arccos\left(\frac{1}{3}\right)=1.23\,\mathrm{rad}=70.5\,^\circ

Herramientas:

Herramientas personales
TOOLBOX
LANGUAGES
licencia de Creative Commons
Aviso legal - Acerca de Laplace