Dos esferas conductoras concéntricas
De Laplace
Línea 132: | Línea 132: | ||
lo que da el voltaje para el conductor 1 | lo que da el voltaje para el conductor 1 | ||
- | <center><math>V_1 = \frac{Q_1}{C_\mathrm{eq}=\frac{2\,\mathrm{nC}}{(2/3)\,\mathrm{pF}}=3\,\mathrm{kV}</math></center> | + | <center><math>V_1 = \frac{Q_1}{C_\mathrm{eq}}=\frac{2\,\mathrm{nC}}{(2/3)\,\mathrm{pF}}=3\,\mathrm{kV}</math></center> |
Para el conductor 2 hay que emplear que los condensadores están en serie y por tanto su carga es la misma, por lo que | Para el conductor 2 hay que emplear que los condensadores están en serie y por tanto su carga es la misma, por lo que |
Revisión de 18:06 19 abr 2014
Contenido |
1 Enunciado
Se construye un sistema de dos conductores metálicos. El “1” es una esfera maciza de radio 6 mm. El “2” es una fina corona esférica, concéntrica con la anterior, de radio 9 mm. Halle la carga almacenada y el potencial al que se encuentra cada conductor, así como la energía almacenada en el sistema, para los siguientes casos:
- La esfera almacena una carga de +2 nC y la corona está aislada y descargada
- La esfera almacena una carga de +2 nC y la corona de +3 nC
- La esfera almacena una carga de −2 nC y la corona de +2 nC
- La esfera almacena una carga de −2 nC y la corona de +3 nC
- La esfera almacena una carga de +2 nC y la corona está a tierra
- La esfera está a tierra y la corona almacena una carga de +3 nC
- La esfera está a +2 kV y la corona está a tierra.
- La esfera está a tierra y la corona a +2 kV.
- La esfera y la corona están a +2 kV
- La esfera está a +2 kV y la corona está a −2 kV.
Sugerencia: Resuélvase primero el caso general, estableciendo relaciones entre las cargas y los potenciales, y expresiones para la energía. Puede ser útil construir un circuito equivalente.
2 Introducción
Aunque este problema consta de muchos apartados, es fácil ver que todos son muy parecidos, sólo cambia el dato que se da y el valor de cada uno.
Éste es un caso particular de problema del potencial. Tenemos un sistema de conductores (dos, en este caso), que se encuentran en equilibrio electrostático. De cada conductor, sabemos que su potencial es el mismo en todos sus puntos, pero no necesariamente cuanto vale éste.
Para cada conductor hay que dar o bien su voltaje o bien su carga total (pero no como está distribuida ésta), nunca las dos cosas a la vez. Eso sería redundante o contradictorio. A partir de esta información se puede determinar las cargas o potenciales que se desconocen, resolviendo el problema del potencial.
En el caso de un sistema de dos conductores, el resultado es una relación lineal entre las cargas y los potenciales
Estos problemas se simplifican mucho mediante la construcción de circuitos equivalentes, donde cada par de superficies conductoras en influencia total se modela como un conductor.
3 Caso general
En este caso concreto, todas las superficies conductoras son esferas concéntricas. Dado que todas ellas son equipotenciales debemos preguntarnos qué distribución de carga produce un potencial uniforme sobre una esfera. La respuesta es sencilla: por la simetría del sistema, lo que tenemos son distribuciones de carga uniformes sobre cada superficie. Esto no sería cierto si tuviéramos esferas descentradas, por ejemplo.
Si las superficies esféricas están cargadas uniformemente, el problema es muy sencillo y ya ha sido resuelto en el tema de electrostática en el vacío. El potencial creado por una superficie cargada uniformemente es, para cualquier punto del espacio
En este caso tenemos dos superficies cargadas. Una de radio a con una carga Q1 (diferente en cada caso) y una de radio b con una carga Q2. Realmente tenemos tres, ya que la corteza exterior tiene dos caras, sin embargo, al ser muy fina, podemos considerar las dos caras como una sola superficie con carga total la suma de las dos caras.
3.1 Potenciales en función de las cargas
Aplicando el resultado anterior tenemos, para el potencial de la esfera maciza
y para la corona exterior
Numéricamente, en el SI
Si medimos la carga en nanoculombios y el voltaje en kilovoltios (como aparece en todos los apartados del enunciado) se simplifican los exponentes
3.2 Cargas en función de los potenciales
A partir de los resultados anteriores, podemos despejar las cargas de los dos conductores en función de ambos potenciales. El resultado es
con los valores numéricos
3.3 Circuito equivalente
Los sistemas de conductores se pueden analizar de forma alternativa mediante la construcción de un circuito equivalente de condensadores. Cada condensador representa aquellas superficies de los conductores que se encuentran en influencia total.
En este caso, tenemos dos nodos, uno por cada conductor. El circuito consta de dos condensadores. Uno representa a la superficie de la esfera maciza y a la cara interior de la corteza. Este condensador conecta los dos nodos. El valor de su capacidad es
El otro representa aquellas líneas de campo que van de la superficie exterior de la corteza hacia el infinito. Su capacidad es igual a la de un conductor esférico
La carga de cada conductor es la suma de las cargas almacenadas en los condensadores unidos a los nodos correspondientes. Para el conductor 1, solo está el primer condensador
Para el conductor 2 tenemos dos condensadores unidos al nodo. Uno con d.d.p. entre placas V2 − V1 y otro con d.d.p. V2 − 0 (ya que el infinito está a tierra). Por tanto
3.4 Energía electrostática
Una vez que se conoce la relación entre cargas y potenciales en el sistema, puede calcularse la energía electrostática que almacena, según la fórmula
Si sustituimos aquí los potenciales en función de las cargas
y agrupamos términos
Numéricamente, usando como antes kilovoltios y nanoculombios para potenciales y cargas y dando el resultado en microjulios
Alternativamente, podemos sustituir las cargas en función de los potenciales
Numéricamente, empleando las mismas unidades que antes,
4 Análisis de los diferentes casos
Armados con todas estas herramientas, ahora el cálculo se reduce a la sustitución en las diferentes ecuaciones. Sin embargo, la mayoría de las situaciones propuestas propiedades específicas o pueden ser objeto de confusión, por lo que conviene analizar los resultados.
4.1 Primer caso
En la primera situación, la corteza está aislada y descargada. Esto quiere decir que
(no que su potencial es cero). También conocemos la carga de la esfera
Sustituyendo obtenemos los potenciales, en kilovoltios
siendo la energía almacenada, en microjulios
Estos resultados sonlos mismos que tendríamos si solo estuviera la esfera interior. En este caso la corteza no desempeña ningún papel en el campo eléctrico.
Empleando el circuito equivalente, al estar el conductor 2 aislado y descargado, el sistema se reduce a dos condensadores en serie, siendo la capacidad equivalente
lo que da el voltaje para el conductor 1
Para el conductor 2 hay que emplear que los condensadores están en serie y por tanto su carga es la misma, por lo que
La energía almacenada, empleando el circuito, es