Entrar Página Discusión Historial Go to the site toolbox

Resorte con rozamiento seco

De Laplace

(Diferencias entre revisiones)
(Máxima distancia sin rozamiento)
Línea 22: Línea 22:
En la posición inicial el muelle está comprimido una cierta cantidad y a partir de ahí se suelta desde el reposo. El movimiento que describe la masa es un movimiento armónico simple alrededor de la posición de equilibrio  
En la posición inicial el muelle está comprimido una cierta cantidad y a partir de ahí se suelta desde el reposo. El movimiento que describe la masa es un movimiento armónico simple alrededor de la posición de equilibrio  
-
<center><math>x = l_0 + A\cos(\omega t-\varphi)\qquad\qquad \omega = \sqrt{\frac{k}{m}}</math></center>
+
<center><math>x = l_0 + A\cos(\omega t-\varphi)\qquad\qquad v=\frac{\mathrm{d}x}{\mathrm{d}t=-A\omega\,\mathrm{sen}(\omega t-\varphi)\qquad\qquad\omega = \sqrt{\frac{k}{m}}</math></center>
Aplicando que conocemos la posición y la velocidad iniciales
Aplicando que conocemos la posición y la velocidad iniciales
Línea 33: Línea 33:
<center><math>x = l_0 + b\cos(\omega t - \pi) = l_0-b\cos(\omega t)</math></center>
<center><math>x = l_0 + b\cos(\omega t - \pi) = l_0-b\cos(\omega t)</math></center>
-
 
-
 
==Máxima distancia con rozamiento==
==Máxima distancia con rozamiento==

Revisión de 09:44 20 ene 2012

Contenido

1 Enunciado

Se tiene una masa m=5.00\,\mathrm{kg} atada a un resorte de constante k=10.0\,\mathrm{N}/\mathrm{cm} y longitud en reposo l_0=150\,\mathrm{mm}. La masa reposa sobre una superficie horizontal sobre la que existe un pequeño coeficiente de rozamiento μ = 0.10. El muelle se comprime una cantidad b=50\,\mathrm{mm} respecto a su posición de equilibrio.

  1. Despreciando en primer lugar el rozamiento, determine la máxima distancia de la pared a la que llega la masa.
  2. Teniendo en cuenta el rozamiento, ¿cuánto vale la distancia de máximo alejamiento?
  3. Al volver a comprimirse el muelle, la masa no retorna a su posición inicial. ¿A qué distancia de la pared se detiene instantáneamente?
  4. ¿Al cabo de cuantas oscilaciones se detiene del todo? ¿Dónde se queda parada?
Archivo:resorte-pared-rozamiento.png

2 Máxima distancia sin rozamiento

Cuando no hay rozamiento, el análisis es sencillo.

Tenemos un movimiento rectilíneo, por lo que podemos emplear cantidades escalares.

Si llamamos x a la distancia desde la pared, la ecuación de movimiento para la masa la da la ley de Hooke,

ma = -k(x-l_0)\,

La única fuerza que afecta al movimiento es la fuerza elástica debida al resorte. Además de esta actúan el peso y la reacción normal del plano, pero éstas se anulan mutuamente y no producen movimiento.

En la posición inicial el muelle está comprimido una cierta cantidad y a partir de ahí se suelta desde el reposo. El movimiento que describe la masa es un movimiento armónico simple alrededor de la posición de equilibrio

No se pudo entender (Falta el ejecutable de <strong>texvc</strong>. Por favor, lea <em>math/README</em> para configurarlo.): x = l_0 + A\cos(\omega t-\varphi)\qquad\qquad v=\frac{\mathrm{d}x}{\mathrm{d}t=-A\omega\,\mathrm{sen}(\omega t-\varphi)\qquad\qquad\omega = \sqrt{\frac{k}{m}}

Aplicando que conocemos la posición y la velocidad iniciales

\left\{\begin{array}{rcl} x(t=0) & = & l_0-b = l_0+A\cos(\varphi) \\ v(t=0) & = & 0 =-A\omega\,\mathrm{sen}(-\varphi)\end{array}\right.\qquad\Rightarrow\qquad A=b\,\qquad\varphi = \pi

De estas ecuaciones podría tomarse como solución que A = − b, \varphi=0, pero, aunque el resultado final es el mismo, debemos procurar tomar la amplitud como una cantidad positiva. Lo que nos dice la constante de fase \varphi=\pi es que la oscilación comienza en el punto de mínima elongación en lugar del de máxima.

La posición para todo instante es entonces de la forma

x = l0 + bcos(ωt − π) = l0bcos(ωt)

3 Máxima distancia con rozamiento

4 Posición de la segunda parada

5 Oscilaciones hasta la detención

6 Consideraciones sobre la energía

Herramientas:

Herramientas personales
TOOLBOX
LANGUAGES
licencia de Creative Commons
Aviso legal - Acerca de Laplace