Ejemplo de sistema de tres partículas
De Laplace
(Diferencias entre revisiones)
(→Aceleraciones) |
(→Aceleraciones) |
||
Línea 51: | Línea 51: | ||
;Masa 1: La aceleración de esta masa vale | ;Masa 1: La aceleración de esta masa vale | ||
- | <center><math>\vec{a}_1 = \frac{-k_{12}(\vec{r}_1-\vec{r}_2)-k_{13}(\vec{r}_1-\vec{r}_3)}{m_1} =\frac{-100(0.90\vec{\imath}-1.20\vec{\jmath})-32(0.90\vec{\imath}-(-1.60\vec{\imath}))}{0. | + | <center><math>\vec{a}_1 = \frac{-k_{12}(\vec{r}_1-\vec{r}_2)-k_{13}(\vec{r}_1-\vec{r}_3)}{m_1} =\frac{-100(0.90\vec{\imath}-1.20\vec{\jmath})-32(0.90\vec{\imath}-(-1.60\vec{\imath}))}{0.400}\,\frac{\mathrm{m}}{\mathrm{s}^2} = \left(-425\vec{\imath}-300\vec{\jmath}\right)\,\frac{\mathrm{m}}{\mathrm{s}^2}</math></center> |
;Masa 2: Para la segunda masa | ;Masa 2: Para la segunda masa | ||
- | <center><math>\vec{a}_2 = \frac{-k_{12}(\vec{r}_2-\vec{r}_1)-k_{23}(\vec{r}_2-\vec{r}_3)}{m_2} =\frac{-100(1.20\vec{\jmath}-0.90\vec{\imath})-100(1.20\vec{\jmath}-(-1.60\vec{\imath}))}{0. | + | <center><math>\vec{a}_2 = \frac{-k_{12}(\vec{r}_2-\vec{r}_1)-k_{23}(\vec{r}_2-\vec{r}_3)}{m_2} =\frac{-100(1.20\vec{\jmath}-0.90\vec{\imath})-100(1.20\vec{\jmath}-(-1.60\vec{\imath}))}{0.500}\,\frac{\mathrm{m}}{\mathrm{s}^2} = \left(-140\vec{\imath}-480\vec{\jmath}\right)\,\frac{\mathrm{m}}{\mathrm{s}^2}</math></center> |
;Masa 3: Por último | ;Masa 3: Por último | ||
- | <center><math>\vec{a}_3 = \frac{-k_{13}(\vec{r}_3-\vec{r}_1)-k_{23}(\vec{r}_3-\vec{r}_1)}{m_3} =\frac{-32(-1.60\vec{\imath}-0.90\vec{\imath})-100(-1.60\vec{\imath}-1.20\vec{\jmath})}{0. | + | <center><math>\vec{a}_3 = \frac{-k_{13}(\vec{r}_3-\vec{r}_1)-k_{23}(\vec{r}_3-\vec{r}_1)}{m_3} =\frac{-32(-1.60\vec{\imath}-0.90\vec{\imath})-100(-1.60\vec{\imath}-1.20\vec{\jmath})}{0.300}\,\frac{\mathrm{m}}{\mathrm{s}^2} = \left(800\vec{\imath}+400\vec{\jmath}\right)\,\frac{\mathrm{m}}{\mathrm{s}^2}</math></center> |
==Centro de masas== | ==Centro de masas== |
Revisión de 17:34 17 ene 2012
Contenido |
1 Enunciado
Tres partículas puntuales se encuentran en un cierto instante en los vértices de un triángulo. Las masas, posiciones y velocidades de las partículas son,
i | mi (g) | (m) | (m/s) |
---|---|---|---|
1 | 400 | ||
2 | 500 | ||
3 | 300 |
Las tres partículas están conectadas por resortes de longitud natural nula. No hay más fuerzas actuando en el sistema, siendo la constante de los que unen la masa 2 con la 1 y la 2 con la 3 y el que une la 1 con la 3 .
Para el instante indicado:
- Determine la aceleración de cada partícula.
- Calcule la posición, velocidad y aceleración del CM.
- Calcule el momento cinético del sistema respecto al origen y respecto al CM.
- Halle la energía cinética del sistema respecto al origen y respecto al CM.
- Calcule las derivadas respecto al tiempo de la cantidad de movimiento, del momento cinético y de la energía cinética.
2 Aceleraciones
De acuerdo con la segunda ley de Newton, la aceleración de cada masa es proporcional a la resultante de las fuerzas que actúan sobre ella
En este caso, las fuerzas sobre cada masa son suma de las fuerzas elñasticas, que verifican la ley de Hooke
Así nos queda
- Masa 1
- La aceleración de esta masa vale
- Masa 2
- Para la segunda masa
- Masa 3
- Por último