Entrar Página Discusión Historial Go to the site toolbox

Partícula cargada en campo magnético uniforme

De Laplace

(Diferencias entre revisiones)
(Caso de una velocidad inicial perpendicular al campo magnético)
Línea 17: Línea 17:
==Introducción==
==Introducción==
-
Este problema trata simplemente de aplicar la segunda ley de Newton <math>\mathbf{F}=m\mathbf{a}</math>, a la ley de Lorentz
+
Este problema trata simplemente de aplicar la segunda ley de Newton <math>\vec{F}=m\vec{a}</math>, a la ley de Lorentz
-
<center><math>\mathbf{F}=q(\mathbf{E}+\mathbf{v}\times\mathbf{B})</math></center>
+
<center><math>\vec{F}=q(\vec{E}+\vec{v}\times\vec{B})</math></center>
Si sólo tenemos presente un campo magnético la ecuación de movimiento a resolver se reduce a
Si sólo tenemos presente un campo magnético la ecuación de movimiento a resolver se reduce a
-
<center><math>m\mathbf{a}=m\frac{\mathrm{d}\mathbf{v}}{\mathrm{d}t}=q\mathbf{v}\times\mathbf{B}
+
<center><math>m\vec{a}=m\frac{\mathrm{d}\vec{v}}{\mathrm{d}t}=q\vec{v}\times\vec{B}
</math></center>
</math></center>
Línea 32: Línea 32:
Si la velocidad inicial es paralela al campo magnético, la fuerza en el instante inicial es
Si la velocidad inicial es paralela al campo magnético, la fuerza en el instante inicial es
-
<center><math>\mathbf{F}(t=0)=q \mathbf{v}_0\times\mathbf{B}=\mathbf{0}</math></center>
+
<center><math>\vec{F}(t=0)=q \vec{v}_0\times\vec{B}=\vec{0}</math></center>
-
Por tanto, la aceleración inicial es nula y <math>\mathbf{v}</math> un instante posterior seguirá siendo <math>\mathbf{v}_0</math>. Extendiendo este razonamiento a todos los instantes posteriores resulta
+
Por tanto, la aceleración inicial es nula y <math>\vec{v}</math> un instante posterior seguirá siendo <math>\vec{v}_0</math>. Extendiendo este razonamiento a todos los instantes posteriores resulta
-
<center><math>\mathbf{v}=\mathbf{v}_0\,</math></center>
+
<center><math>\vec{v}=\vec{v}_0\,</math></center>
-
esto es, si la velocidad inicial es paralela a <math>\mathbf{B}</math>, esta velocidad permanece constante. La partícula describe un movimiento rectilíneo y  
+
esto es, si la velocidad inicial es paralela a <math>\vec{B}</math>, esta velocidad permanece constante. La partícula describe un movimiento rectilíneo y  
uniforme paralelamente al campo magnético. La posición en un instante cualquiera será
uniforme paralelamente al campo magnético. La posición en un instante cualquiera será
-
<center><math>\mathbf{r}=\mathbf{r}_0+\mathbf{v}_0 t\,</math></center>
+
<center><math>\vec{r}=\vec{r}_0+\vec{v}_0 t\,</math></center>
==Caso de una velocidad inicial perpendicular al campo magnético==
==Caso de una velocidad inicial perpendicular al campo magnético==
Si la velocidad inicial es perpendicular al campo magnético, la fuerza inicial no será nula
Si la velocidad inicial es perpendicular al campo magnético, la fuerza inicial no será nula
-
<center><math>\mathbf{F}(t=0)=q \mathbf{v}_0\times\mathbf{B}</math></center>
+
<center><math>\vec{F}(t=0)=q \vec{v}_0\times\vec{B}</math></center>
-
Sin embargo, por ser un producto vectorial en el que interviene <math>\mathbf{B}</math>, resulta una aceleración perpendicular al campo magnético. Esto  
+
Sin embargo, por ser un producto vectorial en el que interviene <math>\vec{B}</math>, resulta una aceleración perpendicular al campo magnético. Esto  
hace que la velocidad en un instante posterior
hace que la velocidad en un instante posterior
-
<center><math>\mathbf{v}(\mathrm{d}t)=\mathbf{v}_0+\mathbf{a}\mathrm{d}t\,</math></center>
+
<center><math>\vec{v}(\mathrm{d}t)=\vec{v}_0+\vec{a}\mathrm{d}t\,</math></center>
sea también perpendicular al campo magnético. Extendiendo el razonamiento, resulta que si la velocidad inicial es perpendicular al campo magnético, lo será en todo instante.
sea también perpendicular al campo magnético. Extendiendo el razonamiento, resulta que si la velocidad inicial es perpendicular al campo magnético, lo será en todo instante.
Línea 59: Línea 59:
Queda determinar el movimiento sobre dicho plano. Si descomponemos la aceleración en sus componentes normal y tangencial
Queda determinar el movimiento sobre dicho plano. Si descomponemos la aceleración en sus componentes normal y tangencial
-
<center><math>\mathbf{a}=\mathbf{a}_t+\mathbf{a}_n=\frac{q}{m}\mathbf{v}\times\mathbf{B}</math></center>
+
<center><math>\vec{a}=\vec{a}_t+\vec{a}_n=\frac{q}{m}\vec{v}\times\vec{B}</math></center>
La aceleración tangencial es la componente paralela a la velocidad, pero el segundo miembro es puramente normal a ella, por tanto
La aceleración tangencial es la componente paralela a la velocidad, pero el segundo miembro es puramente normal a ella, por tanto
-
<center><math>\mathbf{a}_t=\mathbf{0}</math></center>
+
<center><math>\vec{a}_t=\vec{0}</math></center>
Ello implica que
Ello implica que
-
<center><math>0=a_t=\frac{\mathrm{d}|\mathbf{v}|}{\mathrm{d}t}</math>{{qquad}}<math>\Rightarrow</math>{{qquad}}<math>|\mathbf{v}|=|\mathbf{v}_0|=\mathrm{cte}</math></center>
+
<center><math>0=a_t=\frac{\mathrm{d}|\vec{v}|}{\mathrm{d}t}</math>{{qquad}}<math>\Rightarrow</math>{{qquad}}<math>|\vec{v}|=|\vec{v}_0|=\mathrm{cte}</math></center>
Por ser la fuerza de Lorentz puramente normal, la partícula se mueve con velocidad de módulo constante. Este resultado es general en cuanto a que no depende de si el campo magnético es uniforme o no. También puede expresarse en términos de la energía cinética
Por ser la fuerza de Lorentz puramente normal, la partícula se mueve con velocidad de módulo constante. Este resultado es general en cuanto a que no depende de si el campo magnético es uniforme o no. También puede expresarse en términos de la energía cinética
Línea 94: Línea 94:
==Caso de una velocidad inicial arbitraria==
==Caso de una velocidad inicial arbitraria==
-
Supongamos ahora que la velocidad inicial no es ni paralela ni perpendicular a <math>\mathbf{B}</math>, sino que forma un cierto ángulo <math>\alpha</math> con el campo magnético. En este caso, podemos descomponer el problema en suma de los dos casos anteriores. Para ello, escribimos la velocidad como una superposición de una velocidad paralela a <math>\mathbf{B}</math> (proyectando
+
Supongamos ahora que la velocidad inicial no es ni paralela ni perpendicular a <math>\vec{B}</math>, sino que forma un cierto ángulo <math>\alpha</math> con el campo magnético. En este caso, podemos descomponer el problema en suma de los dos casos anteriores. Para ello, escribimos la velocidad como una superposición de una velocidad paralela a <math>\vec{B}</math> (proyectando
sobre esta dirección) y otra perpendicular (hallando el complementario)
sobre esta dirección) y otra perpendicular (hallando el complementario)
-
<center><math>\mathbf{v}=\mathbf{v}_\parallel+\mathbf{v}_\perp</math>{{qquad}}
+
<center><math>\vec{v}=\vec{v}_\parallel+\vec{v}_\perp</math>{{qquad}}
-
<math>\mathbf{v}_\parallel=\frac{(\mathbf{v}{\cdot}\mathbf{B})}{|\mathbf{B}|^2}\,\mathbf{B}</math>{{qquad}}<math>\mathbf{v}_\perp=\mathbf{v}-\mathbf{v}_\parallel</math></center>
+
<math>\vec{v}_\parallel=\frac{(\vec{v}{\cdot}\vec{B})}{|\vec{B}|^2}\,\vec{B}</math>{{qquad}}<math>\vec{v}_\perp=\vec{v}-\vec{v}_\parallel</math></center>
La fuerza de Lorentz, en términos de estas dos componentes, es  
La fuerza de Lorentz, en términos de estas dos componentes, es  
-
<center><math>\mathbf{F}=q(\mathbf{v}\times\mathbf{B})=q\mathbf{v}_\perp \times\mathbf{B}</math></center>
+
<center><math>\vec{F}=q(\vec{v}\times\vec{B})=q\vec{v}_\perp \times\vec{B}</math></center>
-
ya que el producto de dos vectores paralelos se anula. La fuerza resultante es también perpendicular a <math>\mathbf{B}</math>. Por tanto  
+
ya que el producto de dos vectores paralelos se anula. La fuerza resultante es también perpendicular a <math>\vec{B}</math>. Por tanto  
-
<center><math>m\frac{\mathrm{d}\mathbf{v}}{\mathrm{d}t}=m\frac{\mathrm{d}\mathbf{v}_\parallel}{\mathrm{d}t}+m\frac{\mathrm{d}\mathbf{v}_\perp}{\mathrm{d}t}=q\mathbf{v}_\perp\times\mathbf{B}</math>{{qquad}}
+
<center><math>m\frac{\mathrm{d}\vec{v}}{\mathrm{d}t}=m\frac{\mathrm{d}\vec{v}_\parallel}{\mathrm{d}t}+m\frac{\mathrm{d}\vec{v}_\perp}{\mathrm{d}t}=q\vec{v}_\perp\times\vec{B}</math>{{qquad}}
-
<math>\Rightarrow</math>{{qquad}} <math>m\frac{\mathrm{d}\mathbf{v}_\parallel}{\mathrm{d}t}=0</math>{{qquad}}<math>m\frac{\mathrm{d}\mathbf{v}_\perp}{\mathrm{d}t}=q\mathbf{v}_\perp\times\mathbf{B}</math></center>
+
<math>\Rightarrow</math>{{qquad}} <math>m\frac{\mathrm{d}\vec{v}_\parallel}{\mathrm{d}t}=0</math>{{qquad}}<math>m\frac{\mathrm{d}\vec{v}_\perp}{\mathrm{d}t}=q\vec{v}_\perp\times\vec{B}</math></center>
<center>[[Imagen:mov-helicoidal.png|300px|right]]
<center>[[Imagen:mov-helicoidal.png|300px|right]]

Revisión de 19:33 19 ene 2012

Contenido

1 Enunciado

Una carga q en campo magnético experimenta una fuerza

\vec{F}=q\vec{v}\times\vec{B}

Se trata de deducir cómo se mueve la partícula en el caso en el que el campo magnético sea una constante independiente de la posición.

\vec{B}=B_0\vec{k}
  1. Suponga en primer lugar que la velocidad inicial de la partícula es paralela al campo magnético, \vec{v}_0 = v_0\vec{k}. ¿Cuánto vale la aceleración en el instante inicial? ¿Cuanto vale la velocidad un instante posterior? ¿Cómo es el movimiento de la carga en ese caso?
  2. Suponga ahora el caso de una carga cuya velocidad inicial es perpendicular al campo magnético, \vec{v}_0 = v_0\vec{\imath}.
    1. Demuestre que el movimiento resultante es un movimiento plano.
    2. Demuestre que la rapidez del movimiento es constante
    3. Calcule el radio de curvatura de la trayectoria que describe la carga
    4. ¿Qué tipo de movimiento describe la partícula?
  3. Suponga, por último, una velocidad inicial arbitraria \vec{v}_0 = v_{x0}\vec{\imath}+v_{z0}\vec{k}. Combinando los resultados anteriores, ¿qué movimiento realiza la carga?

2 Introducción

Este problema trata simplemente de aplicar la segunda ley de Newton \vec{F}=m\vec{a}, a la ley de Lorentz

\vec{F}=q(\vec{E}+\vec{v}\times\vec{B})

Si sólo tenemos presente un campo magnético la ecuación de movimiento a resolver se reduce a

m\vec{a}=m\frac{\mathrm{d}\vec{v}}{\mathrm{d}t}=q\vec{v}\times\vec{B}

Para resolver esta ecuación consideraremos en primer lugar dos casos particulares:

3 Caso de una velocidad inicial paralela al campo magnético

Si la velocidad inicial es paralela al campo magnético, la fuerza en el instante inicial es

\vec{F}(t=0)=q \vec{v}_0\times\vec{B}=\vec{0}

Por tanto, la aceleración inicial es nula y \vec{v} un instante posterior seguirá siendo \vec{v}_0. Extendiendo este razonamiento a todos los instantes posteriores resulta

\vec{v}=\vec{v}_0\,

esto es, si la velocidad inicial es paralela a \vec{B}, esta velocidad permanece constante. La partícula describe un movimiento rectilíneo y uniforme paralelamente al campo magnético. La posición en un instante cualquiera será

\vec{r}=\vec{r}_0+\vec{v}_0 t\,

4 Caso de una velocidad inicial perpendicular al campo magnético

Si la velocidad inicial es perpendicular al campo magnético, la fuerza inicial no será nula

\vec{F}(t=0)=q \vec{v}_0\times\vec{B}

Sin embargo, por ser un producto vectorial en el que interviene \vec{B}, resulta una aceleración perpendicular al campo magnético. Esto hace que la velocidad en un instante posterior

\vec{v}(\mathrm{d}t)=\vec{v}_0+\vec{a}\mathrm{d}t\,

sea también perpendicular al campo magnético. Extendiendo el razonamiento, resulta que si la velocidad inicial es perpendicular al campo magnético, lo será en todo instante.

La partícula se mueve sobre un plano perpendicular al campo magnético.

Queda determinar el movimiento sobre dicho plano. Si descomponemos la aceleración en sus componentes normal y tangencial

\vec{a}=\vec{a}_t+\vec{a}_n=\frac{q}{m}\vec{v}\times\vec{B}

La aceleración tangencial es la componente paralela a la velocidad, pero el segundo miembro es puramente normal a ella, por tanto

\vec{a}_t=\vec{0}

Ello implica que

0=a_t=\frac{\mathrm{d}|\vec{v}|}{\mathrm{d}t}    \Rightarrow    |\vec{v}|=|\vec{v}_0|=\mathrm{cte}

Por ser la fuerza de Lorentz puramente normal, la partícula se mueve con velocidad de módulo constante. Este resultado es general en cuanto a que no depende de si el campo magnético es uniforme o no. También puede expresarse en términos de la energía cinética

U_c=\frac{1}{2}mv^2=\mathrm{cte}

La energía cinética de una carga en un campo magnético permanece constante. El campo magnético no realiza trabajo sobre ella.

Yendo ahora a la aceleración normal, su módulo es

a_n=\frac{v^2}{R}=\frac{q}{m}vB_0

De aquí se deduce que la partícula se mueve con radio de curvatura constante

R=\frac{mv_0}{qB_0}

Una trayectoria plana de radio constante es una circunferencia. El radio de esta circunferencia se denomina radio de Larmor.

La frecuencia de giro es independiente de la velocidad inicial

\omega=\frac{v_0}{R}=\frac{qB_0}{m}

Esta cantidad (conocida como frecuencia ciclotrón) permite identificar las partículas en los detectores de los aceleradores de partículas, donde estas trayectorias se observan habitualmente.

5 Caso de una velocidad inicial arbitraria

Supongamos ahora que la velocidad inicial no es ni paralela ni perpendicular a \vec{B}, sino que forma un cierto ángulo α con el campo magnético. En este caso, podemos descomponer el problema en suma de los dos casos anteriores. Para ello, escribimos la velocidad como una superposición de una velocidad paralela a \vec{B} (proyectando sobre esta dirección) y otra perpendicular (hallando el complementario)

\vec{v}=\vec{v}_\parallel+\vec{v}_\perp     \vec{v}_\parallel=\frac{(\vec{v}{\cdot}\vec{B})}{|\vec{B}|^2}\,\vec{B}    \vec{v}_\perp=\vec{v}-\vec{v}_\parallel

La fuerza de Lorentz, en términos de estas dos componentes, es

\vec{F}=q(\vec{v}\times\vec{B})=q\vec{v}_\perp \times\vec{B}

ya que el producto de dos vectores paralelos se anula. La fuerza resultante es también perpendicular a \vec{B}. Por tanto

m\frac{\mathrm{d}\vec{v}}{\mathrm{d}t}=m\frac{\mathrm{d}\vec{v}_\parallel}{\mathrm{d}t}+m\frac{\mathrm{d}\vec{v}_\perp}{\mathrm{d}t}=q\vec{v}_\perp\times\vec{B}     \Rightarrow     m\frac{\mathrm{d}\vec{v}_\parallel}{\mathrm{d}t}=0    m\frac{\mathrm{d}\vec{v}_\perp}{\mathrm{d}t}=q\vec{v}_\perp\times\vec{B}

El resultado final es una combinación de los que ya hemos visto: el movimiento paralelo al campo magnético es uniforme, mientras que el perpendicular es circular. La combinación de estos dos movimientos es uno helicoidal. El radio de esta hélice es

<center>R=\frac{mv_\perp}{q B_0}=\frac{mv_0\,\mathrm{sen}\,\alpha}{qB_0}

mientras que el paso de rosca (altura que sube al dar una vuelta) es

b=v_\parallel T=v_0\cos\alpha\left(\frac{2\pi m}{q B_0}\right)=\frac{2\pi m v_0\cos\alpha}{q B_0}

El sentido con el que se recorre la hélice depende del signo de la carga.

Herramientas:

Herramientas personales
TOOLBOX
LANGUAGES
licencia de Creative Commons
Aviso legal - Acerca de Laplace