Entrar Página Discusión Historial Go to the site toolbox

1.12. Ejemplo de construcción de una base

De Laplace

(Diferencias entre revisiones)
(Enunciado)
(Segundo vector)
Línea 36: Línea 36:
<center><math>\vec{u}_2\cdot\vec{u}_2=1</math></center>
<center><math>\vec{u}_2\cdot\vec{u}_2=1</math></center>
-
El procedimiento sistemático consiste en hallar la componente de <math>\vec{a}</math> normal a <math>\vec{v}</math> y posteriormente normalizar el resultado.
+
El procedimiento sistemático consiste en hallar la componente de <math>\vec{a}</math> perpendicular a <math>\vec{v}</math> y posteriormente normalizar el resultado.
La proyección normal la calculamos con ayuda del [[Vectores_libres_(G.I.T.I.)#Doble_producto_vectorial|doble producto vectorial]]
La proyección normal la calculamos con ayuda del [[Vectores_libres_(G.I.T.I.)#Doble_producto_vectorial|doble producto vectorial]]

Revisión de 18:23 6 oct 2010

Contenido

1 Enunciado

Dados los vectores

\vec{v}=\vec{\imath}+2\vec{\jmath}+2\vec{k}        \vec{a}=6\vec{\imath}+9\vec{\jmath}+6\vec{k}

Construya una base ortonormal dextrógira, tal que

  • El primer vector vaya en la dirección de \vec{v}
  • El segundo esté contenido en el plano definido por \vec{v} y \vec{a} y apunte hacia el mismo semiplano (respecto de \vec{v}) que el vector \vec{a}.
  • El tercero sea perpendicular a los dos anteriores, y orientado según la regla de la mano derecha.

2 Primer vector

Obtenemos el primer vector normalizando el vector \vec{v}, esto es, hallando el unitario en su dirección y sentido, lo que se consigue dividiendo este vector por su módulo

\vec{u}_1=\frac{\vec{v}}{v}

Hallamos el módulo de \vec{v}

v = \sqrt{\vec{v}\cdot\vec{v}}=\sqrt{1^2+2^2+2^2}=3

por lo que

\vec{u}_1 = \frac{1}{3}\vec{\imath}+\frac{2}{3}\vec{\jmath}+\frac{2}{3}\vec{k}

3 Segundo vector

El segundo vector debe estar en el plano definido por \vec{v} y \vec{a}, por lo que debe ser una combinación lineal de ambos

\vec{u}_2 = \lambda\vec{v}+\mu\vec{a}

además debe ser ortogonal a \vec{u}_1 (y por tanto, a \vec{v})

\vec{u}_2\cdot\vec{u}_1 = 0 = \vec{u}_2\cdot\vec{v}

y debe ser unitario

\vec{u}_2\cdot\vec{u}_2=1

El procedimiento sistemático consiste en hallar la componente de \vec{a} perpendicular a \vec{v} y posteriormente normalizar el resultado.

La proyección normal la calculamos con ayuda del doble producto vectorial

\vec{a}_n = -\frac{(\vec{a}\times\vec{v})\times\vec{v}}{v^2}

Calculamos el primer producto vectorial

\vec{a}\times\vec{v}=\left|\begin{matrix}\vec{\imath} & \vec{\jmath} & \vec{k}   \\ 6 & 9 & 6\\ 1 & 2 & 2\end{matrix}\right|=6\vec{\imath}-6\vec{\jmath}+3\vec{k}

Hallamos el segundo

(\vec{a}\times\vec{v})\times \vec{v}=\left|\begin{matrix}\vec{\imath} & \vec{\jmath} & \vec{k} \\ 6 & -6 & 3 \\ 1 & 2 & 2  \end{matrix}\right|=-18\vec{\imath}-9\vec{\jmath}+18\vec{k}

Dividiendo por el módulo de \vec{v} al cuadrado y cambiando el signo obtenemos la componente normal

\vec{a}_n = -\frac{(-18\vec{\imath}-9\vec{\jmath}+18\vec{k})}{9}=2\vec{\imath}+\vec{\jmath}-2\vec{k}

Normalizando esta cantidad obtenemos el segundo vector de la base

\vec{u}_2 = \frac{\vec{a}_n}{a_n}=\frac{2}{3}\vec{\imath}+\frac{1}{3}\vec{\jmath}-\frac{2}{3}\vec{k}

4 Tercer vector

El tercer vector lo obtenemos como el producto vectorial de los dos primeros

\vec{u}_3=\vec{u}_1\times\vec{u}_2=\left|\begin{matrix}\vec{\imath} & \vec{\jmath} & \vec{k} \\ 1/3 & 2/3 & 2/3 \\ 2/3 & 1/3 & -2/3\end{matrix}\right|=\frac{1}{9}\left|\begin{matrix}\vec{\imath} & \vec{\jmath} & \vec{k} \\ 1 & 2 & 2 \\ 2 & 1 & -2\end{matrix}\right| = -\frac{2}{3}\vec{\imath}+\frac{2}{3}\vec{\jmath}-\frac{1}{3}\vec{k}

Por tanto, la base ortonormal dextrógira está formada por los vectores


\begin{array}{lcr}
\vec{u}_1 & = & \displaystyle\frac{1}{3}\vec{\imath}+\displaystyle\frac{2}{3}\vec{\jmath}+\displaystyle\frac{2}{3}\vec{k}\\&& \\
\vec{u}_2 & = & \displaystyle\frac{2}{3}\vec{\imath}+\displaystyle\frac{1}{3}\vec{\jmath}-\displaystyle\frac{2}{3}\vec{k}\\&& \\
\vec{u}_3 & = & -\displaystyle\frac{2}{3}\vec{\imath}+\displaystyle\frac{2}{3}\vec{\jmath}-\displaystyle\frac{1}{3}\vec{k}
\end{array}

5 Forma alternativa

Podemos acortar un poco el proceso invirtiendo el orden de cálculo.

El tercer vector de la base es ortogonal a los dos primeros. También es ortogonal a cualquier combinación lineal de los dos primeros, en particular a los dos vectores del enunciado \vec{v} y \vec{a}. Por ello, podemos calcular el tercer vector como

\vec{u}_3 = \frac{\vec{v}\times\vec{a}}{|\vec{v}\times\vec{a}|}

El producto vectorial vale

\vec{v}\times\vec{a} = \left|\begin{matrix}\vec{\imath} & \vec{\jmath} & \vec{k} \\ 1 & 2 & 2 \\ 6 & 9 & 6\end{matrix}\right| = -6\vec{\imath}+6\vec{\jmath}-3\vec{k}

con módulo

\left|\vec{v}\times\vec{a}\right| = \sqrt{6^2+6^2+3^2} = 9

resultando el unitario

\vec{u}_3 = -\frac{2}{3}\vec{\imath}+\frac{2}{3}\vec{\jmath}-\frac{1}{3}\vec{k}

El segundo vector lo obtenemos del producto vectorial del primero y el tercero, teniendo en cuenta el cambio de signo debido a la inversión del orden

\vec{u}_2 = -\vec{u}_1\times\vec{u}_3 = -\left|\begin{matrix}\vec{\imath} & \vec{\jmath} & \vec{k} \\ 1/3 & 2/3 & 2/3 \\ -2/3 & 2/3 & -1/3\end{matrix}\right|=-\frac{1}{9}\left|\begin{matrix}\vec{\imath} & \vec{\jmath} & \vec{k} \\ 1 & 2 & 2 \\ -2 & 2 & -1\end{matrix}\right| = \frac{2}{3}\vec{\imath}+\frac{1}{3}\vec{\jmath}-\frac{2}{3}\vec{k}

Herramientas:

Herramientas personales
TOOLBOX
LANGUAGES
licencia de Creative Commons
Aviso legal - Acerca de Laplace