4.7. Ejemplo de movimiento de precesión
De Laplace
(→Campo de aceleraciones) |
(→Campo de aceleraciones) |
||
Línea 30: | Línea 30: | ||
En este caso la aceleración de O es nula, por estar permanentemente en reposo, mientras que la aceleración angular vale | En este caso la aceleración de O es nula, por estar permanentemente en reposo, mientras que la aceleración angular vale | ||
- | <center><math>\vec{a}^O = \frac{\mathrm{d}\vec{v}^O}{\mathrm{d}t}=\vec{0}</math>{{qquad}}{{qquad}}<math>\vec{\alpha}=\frac{\mathrm{d}\vec{\omega}}{\mathrm{d}t}=-3\,\mathrm{sen} | + | <center><math>\vec{a}^O = \frac{\mathrm{d}\vec{v}^O}{\mathrm{d}t}=\vec{0}</math>{{qquad}}{{qquad}}<math>\vec{\alpha}=\frac{\mathrm{d}\vec{\omega}}{\mathrm{d}t}=-3\,\mathrm{sen}(t)\vec{\imath}+3\cos(t)\vec{\jmath}</math></center> |
Sustituyendo y separando en componentes cartesianas obtenemos | Sustituyendo y separando en componentes cartesianas obtenemos |
Revisión de 20:46 3 ago 2010
Contenido |
1 Enunciado
El movimiento de precesión de una peonza puede describirse como una rotación en torno a un eje instantáneo que a su vez está rotando, manteniéndose fijo el punto de apoyo. Supongamos el caso particular
- Determine el campo de velocidades del sólido.
- Determine el campo de aceleraciones del sólido. ¿Es la aceleración de un punto igual a la derivada de la velocidad en ese punto respecto al tiempo?
- Halle, para cada instante las componentes intrínsecas de la aceleración y el radio de curvatura de los puntos
2 Campo de velocidades
Por tratarse de una rotación pura
Separando en componentes cartesianas
3 Campo de aceleraciones
El campo de aceleraciones tiene la expresión general
En este caso la aceleración de O es nula, por estar permanentemente en reposo, mientras que la aceleración angular vale
Sustituyendo y separando en componentes cartesianas obtenemos
Puede comprobarse de manera inmediata que
y lo mismo para el resto de las componentes: la aceleración de un punto no es igual a la derivada de la velocidad instantánea de dicho punto respecto al tiempo. La razón es que al tener una velocidad no solo cambia la velocidad porque varía t. También x, y y z varían al desplazarse la partícula y por tanto deben ser incluidas en la derivacióin respecto al tiempo mediante la regla de la cadena.