Masa que cae sobre resorte
De Laplace
(→Máxima compresión en el caso inelástico) |
|||
(3 ediciones intermedias no se muestran.) | |||
Línea 90: | Línea 90: | ||
<center><math>m_1v_{1i}+m_2\cdot 0 = (m_1+m_2)v_f\qquad\Rightarrow\qquad v_f = \frac{m_1}{m_1+m_2}v_{1f}=1.4\,\frac{\mathrm{m}}{\mathrm{s}}</math></center> | <center><math>m_1v_{1i}+m_2\cdot 0 = (m_1+m_2)v_f\qquad\Rightarrow\qquad v_f = \frac{m_1}{m_1+m_2}v_{1f}=1.4\,\frac{\mathrm{m}}{\mathrm{s}}</math></center> | ||
+ | |||
+ | La energía que se disipa en esta colisión es | ||
+ | |||
+ | <center><math>\Delta K = \frac{1}{2}(m_1+m_2)v_f^2 - \frac{1}{2}m_1v_{1i}^2 </math></center> | ||
+ | |||
+ | lo que da | ||
+ | |||
+ | <center><math>\Delta K = \left(\frac{1}{2}0.5\times 1.4^2-\frac{1}{2}0.1\times 7.0^2\right)\,\mathrm{J} = -1.96\,\mathrm{J}</math></center> | ||
==Máxima compresión en el caso inelástico== | ==Máxima compresión en el caso inelástico== | ||
+ | Tras la colisión inelástica, el muelle se comprime adicionalmente por dos motivos: | ||
+ | |||
+ | * Porque ahora la plataforma tiene más masa (ya que incluye a la otra masa) | ||
+ | * Porque tiene una velocidad inicial | ||
+ | |||
+ | La compresión debida a la velocidad inicial la hallamos aplicando de nuevo la conservación de la energía mecánica, por lo que, operando igual que antes, | ||
+ | |||
+ | <center><math>A = v_f\sqrt{\frac{m_1+m_2}{k}} = 0.0224\,\mathrm{m}=2.24\,\mathrm{cm}</math></center> | ||
+ | |||
+ | La nueva compresión debida al peso cumple | ||
+ | |||
+ | <center><math>l_0-l_\mathrm{eq}=\frac{(m_1+m_2)g}{k}=0.0025\,\mathrm{m}=2.5\,\mathrm{mm}</math></center> | ||
+ | |||
+ | Esto quiere decir que la nueva posición de equilibrio está medio milímetro por debajo de la anterior. | ||
+ | |||
+ | Sumando las dos deformaciones obtenemos una compresión total de 2.49 cm. | ||
+ | |||
+ | En realidad, hilando más fino, el cálculo correcto debe tener en cuenta que, puesto que la posición de equilibrio ha cambiado, inmediatamente tras la colisión las dos masas tienen una pequeña elongación inicial <math>x_0</math>, de solo 0.5 mm. Por ello, siendo puntillosos, la aplicación de la ley de conservación de la energía da | ||
+ | <center><math> | ||
+ | \frac{1}{2}(m_1+m_2)v_f^2+\frac{1}{2}kx_0^2=\frac{1}{2}kA^2\qquad\rightarrow\qquad A = \sqrt{x_0^2+\frac{(m_1+m_2)v_f^2}{k}}</math></center> | ||
+ | |||
+ | pero al ser tan pequeña esa elongación inicial, el resultado solo se diferencia del anterior en el sexto decimal (0.022366 en vez de 0.022361), por lo que este efecto puede ser ignorado en el cálculo de la amplitud. | ||
+ | |||
[[Categoría:Problemas de energía y leyes de conservación (GIE)]] | [[Categoría:Problemas de energía y leyes de conservación (GIE)]] |
última version al 19:09 28 ene 2014
Contenido |
1 Enunciado
Se tiene una plataforma de masa situada sobre un resorte de constante y longitud natural .
- Calcule cuánto se comprime el resorte debido al peso de la masa, en la posición de equilibrio.
Sobre esta plataforma se deja caer una masa , soltándola sin velocidad inicial desde una altura sobre la plataforma
- Calcule la velocidad que tiene la masa m1 justo antes de impactar con la plataforma.
Si la colisión es perfectamente elástica,
- Calcule la nueva altura que alcanza la masa m1 tras la colisión.
- Calcule cuánto es el máximo que se comprime el resorte por efecto del golpe en la plataforma.
Si la colisión, en vez de ser elástica, es completamente inelástica,
- ¿Cuánta energía se pierde en la colisión?
- ¿Cuánto se comprime como máximo el resorte tras la colisión?
Tómese .
2 Compresión del resorte
Puesto que todas las fuerzas y velocidades van a ser verticales, el problema es unidimensional y podemos emplear cantidades escalares con signo. Consideraremos una velocidad y una fuerza como positivas cuando van hacia abajo y negativas si van hacia arriba.
La presencia de la masa comprime el muelle por acción de su peso. En el equilibrio se compensa la acción del peso con la fuerza recuperadora elástica:
lo que da la compresión del muelle
Sustituyendo los valores numéricos
3 Velocidad de impacto
En la caída de la masa 1 se conserva la energía mecánica. En esta caída la energía potencial se transforma en cinética, cumpliéndose
de donde
siendo su valor numérico
4 Nueva altura máxima
Cuando la masa 1 impacta con la 2 tenemos una colisión elástica en la que se conserva la cantidad de movimiento
y por ser elástica el coeficiente de restitución es la unidad
Esto es un sistema de dos ecuaciones con dos incógnitas, cuya solución para la velocidad de la masa 1 justo tras el choque es
La velocidad es negativa porque la masa rebota hacia arriba. La nueva altura máxima la hallamos aplicando de nuevo la ley de conservación de la energía mecánica
5 Máxima compresión
Tras la colisión, la plataforma adquiere también una cierta velocidad. Ésta se obtiene del sistema de ecuaciones del apartado anterior y el resultado es
Esta velocidad inicial comprime el muelle. La máxima compresión se alcanza cuando toda la energía cinética se almacena como energía potencial elástica
es decir
siendo su valor
6 Energía disipada
En el caso de la colisión completamente inelástica, el coeficiente de restitución es nulo. Esto implica que la masa 1 se funde con la 2. De la conservación de la cantidad de movimiento
La energía que se disipa en esta colisión es
lo que da
7 Máxima compresión en el caso inelástico
Tras la colisión inelástica, el muelle se comprime adicionalmente por dos motivos:
- Porque ahora la plataforma tiene más masa (ya que incluye a la otra masa)
- Porque tiene una velocidad inicial
La compresión debida a la velocidad inicial la hallamos aplicando de nuevo la conservación de la energía mecánica, por lo que, operando igual que antes,
La nueva compresión debida al peso cumple
Esto quiere decir que la nueva posición de equilibrio está medio milímetro por debajo de la anterior.
Sumando las dos deformaciones obtenemos una compresión total de 2.49 cm.
En realidad, hilando más fino, el cálculo correcto debe tener en cuenta que, puesto que la posición de equilibrio ha cambiado, inmediatamente tras la colisión las dos masas tienen una pequeña elongación inicial x0, de solo 0.5 mm. Por ello, siendo puntillosos, la aplicación de la ley de conservación de la energía da
pero al ser tan pequeña esa elongación inicial, el resultado solo se diferencia del anterior en el sexto decimal (0.022366 en vez de 0.022361), por lo que este efecto puede ser ignorado en el cálculo de la amplitud.