Ejemplo de sistema de tres partículas
De Laplace
(→Energía cinética) |
|||
(4 ediciones intermedias no se muestran.) | |||
Línea 49: | Línea 49: | ||
Así nos queda | Así nos queda | ||
- | ;Masa 1: La | + | ;Masa 1: La fuerza neta sobre este masa vale |
- | <center><math>\vec{ | + | <center><math>\vec{F}_1 =-k_{12}(\vec{r}_1-\vec{r}_2)-k_{13}(\vec{r}_1-\vec{r}_3)=\left(-100(0.90\vec{\imath}-1.20\vec{\jmath})-32(0.90\vec{\imath}-(-1.60\vec{\imath}))\right)\mathrm{N} = \left(-170\vec{\imath}+120\vec{\jmath}\right)\,\mathrm{N}</math></center> |
- | + | :y su aceleración | |
- | <center><math>\vec{a} | + | <center><math>\vec{a}_1 = \frac{\vec{F}_1}{m_1}=\frac{-170\vec{\imath}-120\vec{\jmath}}{0.400}\,\frac{\mathrm{m}}{\mathrm{s}^2}=\left(-425\vec{\imath}+300\vec{\jmath}\right)\,\frac{\mathrm{m}}{\mathrm{s}^2}</math></center> |
+ | |||
+ | ;Masa 2: Para la segunda masa, la fuerza es | ||
+ | |||
+ | <center><math>\vec{F}_2 = -k_{12}(\vec{r}_2-\vec{r}_1)-k_{23}(\vec{r}_2-\vec{r}_3) =\left(-100(1.20\vec{\jmath}-0.90\vec{\imath})-100(1.20\vec{\jmath}-(-1.60\vec{\imath}))\right)\mathrm{N} = \left(-70\vec{\imath}-240\vec{\jmath}\right)\mathrm{N}</math></center> | ||
+ | |||
+ | :y la aceleración | ||
+ | |||
+ | <center><math>\vec{a}_2 = \frac{\vec{F}_2}{m_2} =\frac{-70\vec{\imath}-240\vec{\jmath}}{0.500}\,\frac{\mathrm{m}}{\mathrm{s}^2} = \left(-140\vec{\imath}-480\vec{\jmath}\right)\,\frac{\mathrm{m}}{\mathrm{s}^2}</math></center> | ||
;Masa 3: Por último | ;Masa 3: Por último | ||
- | <center><math>\vec{ | + | <center><math>\vec{F}_3 = -k_{13}(\vec{r}_3-\vec{r}_1)-k_{23}(\vec{r}_3-\vec{r}_1) =\left(-32(-1.60\vec{\imath}-0.90\vec{\imath})-100(-1.60\vec{\imath}-1.20\vec{\jmath})\right)\mathrm{N}= \left(240\vec{\imath}+120\vec{\jmath}\right)\,\mathrm{N}</math></center> |
+ | |||
+ | :siendo la aceleración | ||
+ | |||
+ | <center><math>\vec{a}_3 = \frac{\vec{F}_3}{m_3} =\frac{240\vec{\imath}+120\vec{\jmath}}{0.300}\,\frac{\mathrm{m}}{\mathrm{s}^2} = \left(800\vec{\imath}+400\vec{\jmath}\right)\,\frac{\mathrm{m}}{\mathrm{s}^2}</math></center> | ||
+ | |||
+ | Puede comprobarse que la suma de todas las fuerzas es nula, como corresponde a que se trate de fuerzas internas newtonianas. | ||
==Centro de masas== | ==Centro de masas== | ||
Línea 108: | Línea 122: | ||
==Derivadas temporales== | ==Derivadas temporales== | ||
+ | ===Cantidad de movimiento=== | ||
+ | En un sistema de partículas la derivada respecto al tiempo de la cantidad de movimiento es igual a la resultante de las fuerzas externas aplicadas, que en este caso es nula (todas las fuerzas son internas) | ||
+ | |||
+ | <center><math>\frac{\mathrm{d}\vec{p}}{\mathrm{d}t} = \sum_i \vec{F}_{i\mathrm{ext}}=\vec{0}</math></center> | ||
+ | |||
+ | ===Momento cinético=== | ||
+ | Análogamente, la derivada del momento cinético es igual a la resultante de los momentos de las fuerzas externas aplicadas, que en este caso será también nula | ||
+ | |||
+ | <center><math>\frac{\mathrm{d}\vec{L}_O}{\mathrm{d}t} = \sum_i\vec{r}_i\times\vec{F}_{i\mathrm{ext}}=\vec{0}</math></center> | ||
+ | |||
+ | ===Energía cinética=== | ||
+ | La derivada de la energía cinética, en cambio, depende también de las fuerzas internas | ||
+ | |||
+ | <center><math>\frac{\mathrm{d}K}{\mathrm{d}t}=\sum_i \vec{F}_i\cdot\vec{v}_i</math></center> | ||
+ | |||
+ | Sumando las potencias indivuales | ||
+ | |||
+ | <center><math>\frac{\mathrm{d}K}{\mathrm{d}t}=\left(\left(-170\vec{\imath}+120\vec{\jmath}\right)\cdot\left(3.00\vec{\jmath}\right)+ \left(-70\vec{\imath}-240\vec{\jmath}\right)\cdot\left(-1.20\vec{\imath}\right)+\left(240\vec{\imath}+120\vec{\jmath}\right)\cdot\left(4.00\vec{\jmath}\right)\right)\mathrm{W}=924\,\mathrm{W}</math></center> | ||
+ | |||
+ | Esta potencia se emplea por completo en modificar la energía cinética respecto al centro de masas, <math>K'</math>, ya que la energía cinética de traslación es constante por moverse el CM de manera uniforme (de acuerdo con la conservación de la cantidad de movimiento). Este aumento en la energía cinética se hace a costa de la energía potencial elástica almacenada en los tres resortes. | ||
[[Categoría:Problemas de dinámica de los sistemas de partículas (GIE)]] | [[Categoría:Problemas de dinámica de los sistemas de partículas (GIE)]] |
última version al 10:38 18 ene 2012
Contenido |
1 Enunciado
Tres partículas puntuales se encuentran en un cierto instante en los vértices de un triángulo. Las masas, posiciones y velocidades de las partículas son,
i | mi (g) | (m) | (m/s) |
---|---|---|---|
1 | 400 | ||
2 | 500 | ||
3 | 300 |
Las tres partículas están conectadas por resortes de longitud natural nula. No hay más fuerzas actuando en el sistema, siendo la constante de los que unen la masa 2 con la 1 y la 2 con la 3 y el que une la 1 con la 3 .
Para el instante indicado:
- Determine la aceleración de cada partícula.
- Calcule la posición, velocidad y aceleración del CM.
- Calcule el momento cinético del sistema respecto al origen y respecto al CM.
- Halle la energía cinética del sistema respecto al origen y respecto al CM.
- Calcule las derivadas respecto al tiempo de la cantidad de movimiento, del momento cinético y de la energía cinética.
2 Aceleraciones
De acuerdo con la segunda ley de Newton, la aceleración de cada masa es proporcional a la resultante de las fuerzas que actúan sobre ella
En este caso, las fuerzas sobre cada masa son suma de las fuerzas elñasticas, que verifican la ley de Hooke
Así nos queda
- Masa 1
- La fuerza neta sobre este masa vale
- y su aceleración
- Masa 2
- Para la segunda masa, la fuerza es
- y la aceleración
- Masa 3
- Por último
- siendo la aceleración
Puede comprobarse que la suma de todas las fuerzas es nula, como corresponde a que se trate de fuerzas internas newtonianas.
3 Centro de masas
La posición, velocidad y aceleración del centro de masas son las respectivas medias ponderadas de las propiedades de las tres partículas.
- Posición
- Velocidad
- Aceleración
- Operando de la misma forma con las aceleraciones calculadas en el apartado anterior queda
- La aceleración del CM es nula, al ser todas las fuerzas internas y newtonianas.
4 Momento cinético
El momento cinético del sistema respecto a un punto es igual a la suma de los momentos cinéticos respectivos
Sustituyendo cada uno de los valores del enunciado calculamos el momento cinético respecto al origen de coordenadas
Este momento cinético puede descomponerse en la forma
De aquí podemos despejar el momento cinético respecto al centro de masas
5 Energía cinética
Operando de manera análoga se calcula la energía cinética. la total del sistema vale
Como con el momento cinético, la energía cinética se puede descomponer en una parte debida al movimiento con el centro del masas más una parte asociada al movimiento alrededor de él
Despejamos la energía cinética relativa al CM
6 Derivadas temporales
6.1 Cantidad de movimiento
En un sistema de partículas la derivada respecto al tiempo de la cantidad de movimiento es igual a la resultante de las fuerzas externas aplicadas, que en este caso es nula (todas las fuerzas son internas)
6.2 Momento cinético
Análogamente, la derivada del momento cinético es igual a la resultante de los momentos de las fuerzas externas aplicadas, que en este caso será también nula
6.3 Energía cinética
La derivada de la energía cinética, en cambio, depende también de las fuerzas internas
Sumando las potencias indivuales
Esta potencia se emplea por completo en modificar la energía cinética respecto al centro de masas, K', ya que la energía cinética de traslación es constante por moverse el CM de manera uniforme (de acuerdo con la conservación de la cantidad de movimiento). Este aumento en la energía cinética se hace a costa de la energía potencial elástica almacenada en los tres resortes.