2.5. Rectilíneo con desaceleración creciente (Ex.Nov/11)
De Laplace
(→Velocidad y posición) |
m (3.5. Rectilíneo con desaceleración creciente (Ex.Nov/11) trasladada a 2.5. Rectilíneo con desaceleración creciente (Ex.Nov/11)) |
||
(4 ediciones intermedias no se muestran.) | |||
Línea 1: | Línea 1: | ||
==Enunciado== | ==Enunciado== | ||
- | Una partícula está recorriendo el eje OX en sentido positivo con una celeridad constante de 25 m/s. En un instante dado (t=0) se detecta un obstáculo en su trayectoria a 50 m por delante de ella. A partir de dicho instante se le aplica a la partícula una desaceleración creciente en el tiempo según la fórmula <math>\,\vec{a}(t)=-Kt\,\vec{\imath}\,\,</math>, donde <math>K\,</math> es una constante de valor igual a 8.00 m/s | + | Una partícula está recorriendo el eje OX en sentido positivo con una celeridad constante de 25 m/s. En un instante dado (t=0) se detecta un obstáculo en su trayectoria a 50 m por delante de ella. A partir de dicho instante se le aplica a la partícula una desaceleración creciente en el tiempo según la fórmula <math>\,\vec{a}(t)=-Kt\,\vec{\imath}\,\,</math>, donde <math>K\,</math> es una constante de valor igual a 8.00 m/s³. ¿Cuánto tiempo tardará en detenerse la partícula? ¿A qué distancia del obstáculo se detendrá? |
==Velocidad y posición== | ==Velocidad y posición== |
última version al 15:20 23 sep 2013
Contenido |
1 Enunciado
Una partícula está recorriendo el eje OX en sentido positivo con una celeridad constante de 25 m/s. En un instante dado (t=0) se detecta un obstáculo en su trayectoria a 50 m por delante de ella. A partir de dicho instante se le aplica a la partícula una desaceleración creciente en el tiempo según la fórmula , donde es una constante de valor igual a 8.00 m/s³. ¿Cuánto tiempo tardará en detenerse la partícula? ¿A qué distancia del obstáculo se detendrá?
2 Velocidad y posición
Se trata de un movimiento rectilíneo a lo largo del eje OX. Por tanto, podemos escribir:
Considerando por simplicidad que el origen de coordenadas coincide con la posición de la partícula en el instante en que se detecta el obstáculo , conocemos también las condiciones iniciales:
Por tanto, determinar la velocidad y la posición de la partícula para se reduce a integrar la aceleración una y dos veces, respectivamente, entre el instante inicial y un instante genérico:
3 Tiempo que tarda en detenerse
La partícula se detendrá en el instante en el que se anule su velocidad, es decir:
y sustituyendo los datos numéricos:
4 Distancia del obstáculo
Para determinar la distancia del obstáculo a la que se detiene la partícula, simplemente hay que evaluar la posición (coordenada ) de la partícula para el instante , y después restársela a la posición en la que se encuentra el obstáculo:
y sustituyendo los datos numéricos: