Entrar Página Discusión Historial Go to the site toolbox

Masa que cuelga de dos muelles

De Laplace

(Diferencias entre revisiones)
(Ley horaria)
(Ley horaria)
Línea 87: Línea 87:
<center><math>y = \frac{v_0}{\omega}\cos\left(\omega t +\frac{\pi}{2}\right)= -\frac{v_0}{\omega}\,\mathrm{sen}\,(\omega t)</math></center>
<center><math>y = \frac{v_0}{\omega}\cos\left(\omega t +\frac{\pi}{2}\right)= -\frac{v_0}{\omega}\,\mathrm{sen}\,(\omega t)</math></center>
-
v_0=A\,\mathrm{sen}\,\phi{{tose}}
 
====Forma alternativa===
====Forma alternativa===

Revisión de 18:00 19 jun 2009

Contenido

1 Enunciado

Se tiene una masa m que cuelga de una asociación de dos muelles en paralelo con constantes recuperadoras k1 y k2 y longitudes naturales L1 y L2, respectivamente.

  1. Determine el valor de la elongación de la asociación en la situación de equilibrio.
  2. Se empuja la masa verticalmente hacia arriba con una velocidad inicial v0. Suponiendo que el rozamiento es despreciable, encuentre la evolución de la posición de la masa en el tiempo y el período de oscilación (Escoja como origen de coordenadas la posición de equilibrio del apartado anterior). Calcule la posición más alta que alcanza la masa y su energía en ese instante.
  3. Se añade un pistón de masa despreciable, de modo que se mueve dentro de un cilindro relleno con nitrógeno. Determine la longitud de onda de la onda de sonido generada en el cilindro, considerando que el gas es ideal.
  4. Determine los valores numÚricos de las magnitudes pedidas en los apartados anteriores.

Datos: m = 100\,\mathrm{g}, k_1=100\,\mathrm{N}/\mathrm{m}, k_2=200\,\mathrm{N}/\mathrm{m}, L_1=10.0\,\mathrm{cm}, L_2=12.0\,\mathrm{cm}, g=9.81\,\mathrm{m}/\mathrm{s}^2, v_0=100\,\mathrm{cm}/\mathrm{s}, M_{N}=28.0\,\mathrm{g}/\mathrm{mol}, T=25.0^\circ\mathrm{C}

2 Elongación de equilibrio

La condición de equilibrio para la masa es

\sum_i \mathbf{F}_i=\mathbf{0}

donde las fuerzas que actúan sobre la masa son las dos fuerzas elásticas y el peso. Tomando, como se indica, el eje Y vertical y hacia abajo, las fuerzas valen

\mathbf{F}_1 = -k_1(L_\mathrm{eq}-L_1)\mathbf{j}\,        \mathbf{F}_2 = -k_2(L_\mathrm{eq}-L_2)\mathbf{j}\,        \mathbf{F}_3=\mathbf{P}=mg\mathbf{j}\,

Sumando e igualando a cero, puesto que solo tenemos una componente,

-k_1(L_\mathrm{eq}-L_1)-k_2(L_\mathrm{eq}-L_2) + mg = 0\,

y despejando

L_\mathrm{eq}=\frac{mg+k_1L_1+k_2L_2}{k_1+k_2}

Vemos que la posición de equilibrio no es igual al peso dividida por la constante de la asociación, ya que hay que tener en cuenta la diferencia en las longitudes naturales.

3 Propiedades de la oscilación

3.1 Ecuación de movimiento

Consideremos ahora la dinámica de la masa. La segunda ley de Newton para el movimiento es

m\mathbf{a}=\mathbf{F}_1+\mathbf{F}_2+\mathbf{F}_3

donde ahora ya las fuerzas no tienen los valores de la posición del equilibrio, sino que dependen de la posición de la masa.

Si describimos la posición de la masa por la coordenada y, medida desde la posición de equilibrio, tenemos que la elongación de cada muelle es

L =L_\mathrm{eq}+y\,

Teniendo en cuenta que el movimiento es unidimensional, la ecuación de movimiento queda

m\frac{\mathrm{d}^2y}{\mathrm{d}t^2} = -k_1(L-L_1)-k_2(L-L_2)+mg

Sustituyendo y agrupando términos

m\frac{\mathrm{d}^2y}{\mathrm{d}t^2} = -(k_1+k_2)y+\left(-k_1(L_\mathrm{eq}-L_1)-k_2(L_\mathrm{eq}-L_2)+mg\right)=-(k_1+k_2)y

Esta es la ecuación de movimiento de un oscilador armónico

\frac{\mathrm{d}^2y}{\mathrm{d}t^2}=-\frac{k_1+k_2}{m}y = -\omega^2y

donde la frecuencia de oscilación y el periodo son

\omega = \sqrt{\frac{k_1+k_2}{m}}        T = \frac{2\pi}{\omega}=2\pi\sqrt{\frac{m}{k_1+k_2}}

Vemos que la asociación de dos muelles en paralelo se comporta como uno solo de constante k1 + k2 a la hora de describir las oscilaciones en torno a la posición de equilibrio, no al punto de anclaje. O, dicho de otro modo, que la fórmula sencilla keq = k1 + k2 solo vale cuando la longitud natural es nula.

3.2 Ley horaria

La solución de esta ecuación diferencial es

y = A\cos(\omega t + \phi)\,

con A la amplitud de las oscilaciones y φ la constante de fase.

Determinamos A y φ de las condiciones iniciales. Sabemos que cuando se encuentra en la posición de equilibrio (y=0) se mueve con velocidad hacia arriba v0 (ya que el eje apunta hacia abajo). Por tanto tenemos el sistema

0 = y(0) = A\cos(\phi)\,        -v_0=\left.\frac{\mathrm{d}y}{\mathrm{d}t}\right|_{t=0}=-A\omega\,\mathrm{sen}\,(\phi)

De la primera tenemos que

\phi = \pm\frac{\pi}{2}

pero el signo del desfase no lo sabemos aún, pues tanto +90° como -90° tienen coseno nulo. El signo lo da la segunda ecuación. puesto que tanto v0 como la amplitud y la frecuencia son cantidades positivas, debe ser

\,\mathrm{sen}\,\phi >0    \Rightarrow   \phi=+\frac{\pi}{2}

y

A = \frac{v_0}{\omega} = v_0\sqrt{\frac{m}{k_1+k_2}}

Por tanto, la ley horaria queda

y = \frac{v_0}{\omega}\cos\left(\omega t +\frac{\pi}{2}\right)= -\frac{v_0}{\omega}\,\mathrm{sen}\,(\omega t)

3.3 =Forma alternativa

Otra forma de obtener la ley horaria es partir de la solución general, escrita como,

y = a \cos(\omega t)+ b\,\mathrm{sen}\,(\omega t)

Imponiendo aquí las condiciones iniciales

0 = y(0) = a\cdot 1+ b\cdot0=a\,        -v_0=\left.\frac{\mathrm{d}y}{\mathrm{d}t}\right|_{t=0}=-A\omega\cdot 0 + b\omega\cdot 1 = b\omega

de donde

a = 0\qquad b = \frac{v_0}{\omega}   \Rightarrow    y = \frac{v_0}{\omega}\,\mathrm{sen}\,(\omega t)

4 Onda sonora

5 Valores numéricos

Herramientas:

Herramientas personales
TOOLBOX
LANGUAGES
licencia de Creative Commons
Aviso legal - Acerca de Laplace