Entrar Página Discusión Historial Go to the site toolbox

Ciclo Diesel

De Laplace

(Diferencias entre revisiones)
(Comparación con el ciclo Otto)
(Comparación con el ciclo Otto)
Línea 79: Línea 79:
<center><math>\eta = 1 - \frac{1}{r^{\gamma-1}}\left(\frac{r_c^\gamma-1}{\gamma (r_c-1)}\right)</math></center>
<center><math>\eta = 1 - \frac{1}{r^{\gamma-1}}\left(\frac{r_c^\gamma-1}{\gamma (r_c-1)}\right)</math></center>
-
vemos que la eficiencia de un ciclo Diesel se diferencia de la de un ciclo Otto por el factor entre paréntesis. Este factor siempre mayor que la unidad, por ello, para iguales razones de compresión r
+
vemos que la eficiencia de un ciclo Diesel se diferencia de la de un ciclo Otto por el factor entre paréntesis. Este factor siempre mayor que la unidad, por ello, para iguales razones de compresión <math>r</math>
<center><math>\eta_\mathrm{Diesel}>\eta_\mathrm{Otto}\,</math></center>
<center><math>\eta_\mathrm{Diesel}>\eta_\mathrm{Otto}\,</math></center>
[[Categoría:Segundo Principio]]
[[Categoría:Segundo Principio]]

Revisión de 10:36 21 may 2009

Contenido

1 Enunciado

Un motor diésel puede modelarse con el ciclo ideal formado por seis pasos reversibles, según se indica en la figura. Pruebe que el rendimiento de este ciclo viene dado por la expresión

\eta = 1 -\frac{1}{\gamma r^{\gamma-1}}\,\frac{r_c^\gamma-1}{r_c-1}

siendo r = VA / VB la razón de compresión y rc = VC / VB la relación de combustión. El método para obtener este resultado es análogo al empleado para el ciclo Otto. Compare los rendimientos del ciclo de Otto y el diésel. ¿Cuáles son las ventajas e inconvenientes respectivos?

2 Introducción

Un ciclo Diésel ideal es un modelo simplificado de lo que ocurre en un motor diésel. En un motor de esta clase, a diferencia de lo que ocurre en un motor de gasolina la combustión no se produce por la ignición de una chispa en el interior de la cámara. En su lugar, aprovechando las propiedades químicas del gasóleo, el aire es comprimido hasta una temperatura superior a la de autoignición del gasóleo y el combustible es inyectado a presión en este aire caliente, produciéndose la combustión de la mezcla.

Puesto que sólo se comprime aire, la relación de compresión (cociente entre el volumen en el punto más bajo y el más alto del pistón) puede ser mucho más alta que la de un motor de gasolina (que tiene un límite, por ser indeseable la autoignición de la mezcla). La relación de compresión de un motor diésel puede oscilar entre 12 y 24, mientras que el de gasolina puede rondar un valor de 8.

Para modelar el comportamiento del motor diésel se considera un ciclo Diesel de seis pasos, dos de los cuales se anulan mutuamente:

Admisión E→A
El pistón baja con la válvula de admisión abierta, aumentando la cantidad de aire en la cámara. Esto se modela como una expansión a presión constante (ya que al estar la válvula abierta la presión es igual a la exterior). En el diagrama PV aparece como una recta horizontal.
Compresión A→B
El pistón sube comprimiendo el aire. Dada la velocidad del proceso se supone que el aire no tiene posibilidad de intercambiar calor con el ambiente, por lo que el proceso es adiabático. Se modela como la curva adiabática reversible A→B, aunque en realidad no lo es por la presencia de factores irreversibles como la fricción.
Combustión B→C
Un poco antes de que el pistón llegue a su punto más alto y continuando hasta un poco después de que empiece a bajar, el inyector introduce el combustible en la cámara. Al ser de mayor duración que la combustión en el ciclo Otto, este paso se modela como una adición de calor a presión constante. Éste es el único paso en el que el ciclo Diesel se diferencia del Otto.
Expansión C→D
La alta temperatura del gas empuja al pistón hacia abajo, realizando trabajo sobre él. De nuevo, por ser un proceso muy rápido se aproxima por una curva adiabática reversible.
Escape D→A y A→E
Se abre la válvula de escape y el gas sale al exterior, empujado por el pistón a una temperatura mayor que la inicial, siendo sustituido por la misma cantidad de mezcla fría en la siguiente admisión. El sistema es realmente abierto, pues intercambia masa con el exterior. No obstante, dado que la cantidad de aire que sale y la que entra es la misma podemos, para el balance energético, suponer que es el mismo aire, que se ha enfriado. Este enfriamiento ocurre en dos fases. Cuando el pistón está en su punto más bajo, el volumen permanece aproximadamente constante y tenemos la isócora D→A. Cuando el pistón empuja el aire hacia el exterior, con la válvula abierta, empleamos la isobara A→E, cerrando el ciclo.

En total, el ciclo se compone de dos subidas y dos bajadas del pistón, razón por la que es un ciclo de cuatro tiempos, aunque este nombre se suele reservar para los motores de gasolina.

3 Rendimiento en función de las temperaturas

Un ciclo diésel contiene dos proceso adiabáticos, A→B y C→D, en los que no se intercambia calor. De los otros dos, en el calentamiento a presión constante B→C, el gas recibe una cantidad de calor | Qc | del exterior igual a

|Q_c| = nc_p(T_C-T_B)\,

En el enfriamiento a volumen constante D→A el sistema cede una cantidad de calor al ambiente

|Q_f| = nc_V(T_D-T_A)\,

El rendimiento del ciclo será entonces

\eta = 1 - \frac{|Q_f|}{|Q_c|} = 1 - \frac{c_V(T_D-T_A)}{c_p(T_C-T_B)}=1 - \frac{(T_D-T_A)}{\gamma(T_C-T_B)}

con γ = cp / cV la proporción entre las capacidades caloríficas.

4 Rendimiento en función de los volúmenes

La expresión anterior requiere conocer las cuatro temperaturas de los vértices del ciclo. Puede simplificarse teniendo en cuenta las características de cada uno de los procesos que lo componen.

Así tenemos, para la compresión adiabática A→B

T_AV_A^{\gamma-1} = T_BV_B^{\gamma-1}

que, teniendo en cuenta la relación de compresión, podemos reescribir como

r \equiv \frac{V_A}{V_B}   \Rightarrow    T_B = T_A r^{\gamma-1}\,

Para la expansión a presión constante, aplicando la ecuación de estado de los gases ideales

p_B = p_C\,   \Rightarrow   \frac{V_B}{T_B} = \frac{V_C}{T_C}

Introduciendo ahora la relación rc = VC / VB obtenemos

T_C = T_Br_c = T_Ar_cr^{\gamma-1}\,

Por último, para la temperatura en D aplicamos de nuevo la ley de Poisson y el que el enfriamiento es a volumen constante:

V_D = V_A\,        T_CV_C^{\gamma-1}=T_DV_D^{\gamma-1}\,   \Rightarrow   T_D = T_C\left(\frac{V_C}{V_A}\right)^{\gamma-1}

Multiplicando y dividiendo por VB y aplicando el valor de la temperatura en C

T_D = T_Ar_cr^{\gamma-1}\left(\frac{r_c}{r}\right)^{\gamma-1}=T_Ar_c^\gamma

Combinado estos resultados nos queda

T_D - T_A = T_Ar_c^\gamma-T_A = T_A(r_c^\gamma-1)\,        T_C-T_B =  T_Ar_cr^{\gamma-1} - T_A r^{\gamma-1} = T_Ar^{\gamma-1}(r_c-1)\,

Sustituyendo esto en la expresión del rendimiento obtenemos finalmente

\eta = 1 - \frac{(T_D-T_A)}{\gamma(T_C-T_B)}=  1 - \frac{r_c^\gamma-1}{\gamma r^{\gamma-1}(r_c-1)}

5 Comparación con el ciclo Otto

Según indicamos en la introducción, el ciclo Diesel ideal se distingue del Otto ideal en la fase de combustión, que en el ciclo Otto se supone a volumen constante y en el Diesel a presión constante. Por ello el rendimiento es diferente.

Si escribimos el rendimiento de un ciclo Diesel en la forma

\eta = 1 - \frac{1}{r^{\gamma-1}}\left(\frac{r_c^\gamma-1}{\gamma (r_c-1)}\right)

vemos que la eficiencia de un ciclo Diesel se diferencia de la de un ciclo Otto por el factor entre paréntesis. Este factor siempre mayor que la unidad, por ello, para iguales razones de compresión r

\eta_\mathrm{Diesel}>\eta_\mathrm{Otto}\,

Herramientas:

Herramientas personales
TOOLBOX
LANGUAGES
licencia de Creative Commons
Aviso legal - Acerca de Laplace