Entrar Página Discusión Historial Go to the site toolbox

Dipolo magnético

De Laplace

(Diferencias entre revisiones)
(Desarrollo multipolar magnético)
(Desarrollo multipolar magnético)
Línea 16: Línea 16:
resulta (de forma no trivial) la expresión aproximada para el potencial vector
resulta (de forma no trivial) la expresión aproximada para el potencial vector
-
<center><math>\mathbf{A}=\frac{\mu_0\mathbf{m}\times\mathbf{r}}{r^3}</math></center>
+
<center><math>\mathbf{A}=\frac{\mu_0}{4\pi}\frac{\mathbf{m}\times\mathbf{r}}{r^3}</math></center>
donde  
donde  

Revisión de 13:47 26 mar 2009

Contenido

1 Desarrollo multipolar magnético

Supongamos que tenemos una distribución de corriente estacionaria que ocupa una pequeña región del espacio y queremos hallar el campo en puntos alejados.

Cuando se dice “una pequeña región del espacio” se entiende que comparada con la distancia al punto de observación. Matemáticamente:

\delta=\frac{\mathrm{max}(|\mathbf{r}'|)}{r}\ll 1

Como con el campo eléctrico, la idea del desarrollo multipolar es hacer un cálculo aproximado, más sencillo que la integral exacta (la cual puede ser imposible de calcular) mediante el empleo de una serie de Taylor. Partimos de la expresión del potencial vector para el caso de una espira

\mathbf{A}=\frac{\mu_0I}{4\pi}\oint\frac{\mathrm{d}\mathbf{r}'}{|\mathbf{r}-\mathbf{r}'|}

Aplicando el desarrollo del binomio de Newton

\frac{\mathrm{d}\mathbf{r}'}{|\mathbf{r}-\mathbf{r}'|}=\frac{1}{r}+\frac{\mathbf{r}\cdot\mathbf{r}'}{r^3}+\mathrm{O}(\delta^2)

resulta (de forma no trivial) la expresión aproximada para el potencial vector

\mathbf{A}=\frac{\mu_0}{4\pi}\frac{\mathbf{m}\times\mathbf{r}}{r^3}

donde

\mathbf{m}=\frac{I}{2}\oint \mathbf{r}'\times\mathrm{d}\mathbf{r}'

es el momento magnético dipolar de la espira.

1.1 Demostración detallada

La obtención de la expresión aproximada del potencial vector no es elemental. Si sustituimos

2 Momento dipolar magnético

3 Campo magnético de un dipolo

4 Acción de un campo externo sobre un dipolo

4.1 Fuerza

4.2 Par y momento

4.3 Energía

Herramientas:

Herramientas personales
TOOLBOX
LANGUAGES
licencia de Creative Commons
Aviso legal - Acerca de Laplace