Estudio analítico de una barra apoyada
De Laplace
Línea 49: | Línea 49: | ||
Aplicamos la ecuación de Lagrange a la coordenada θ | Aplicamos la ecuación de Lagrange a la coordenada θ | ||
- | <center><math>\frac{\partial\mathcal{L}}{\partial\dot{\theta}}=\frac{mb^2}{3}\dot{\theta}\qquad\qquad \frac{\mathrm{d}\ }{\mathrm{d}t}\left(\frac{\partial\mathcal{L}}{\partial\dot{\theta}}\right)=\frac{mb^2}{3}\ddot{\theta}< | + | <center><math>\frac{\partial\mathcal{L}}{\partial\dot{\theta}}=\frac{mb^2}{3}\dot{\theta}\qquad\qquad \frac{\mathrm{d}\ }{\mathrm{d}t}\left(\frac{\partial\mathcal{L}}{\partial\dot{\theta}}\right)=\frac{mb^2}{3}\ddot{\theta}<\qquad\qquad \frac{\partial\mathcal{L}}{\partial{\theta}}=\frac{mgb}{2}S</math></center> |
- | + | ||
- | + | ||
- | + | ||
lo que nos da la ecuación de movimiento | lo que nos da la ecuación de movimiento |
Revisión de 20:22 20 ene 2018
Contenido |
1 Enunciado
Supongamos que tenemos una barra de masa m y longitud b apoyada en el suelo y en una pared vertical, sometida a la acción del peso (vertical y hacia abajo) y a las fuerzas de reacción en los puntos de contacto. No hay rozamiento con las superficies
- Determine la lagrangiana del sistema.
- Halle la ecuación de movimiento para el ángulo θ.
- Determine una constante de movimiento no trivial.
- Añadiendo una coordenada x que representaría la separación de la barra respecto de la pared vertical, calcule la fuerza de reacción ejercida por la pared.
- Existe un valor de θ para el cual la barra se separa de la pared. Determine este valor.
- Halle la ecuación de movimiento para la barra una vez que se ha separado de la pared.
2 Lagrangiana del sistema
2.1 Energía cinética
Podemos hallar la energía cinética a partir de la expresión general para un sólido
En el caso de un movimiento plano esta expresión se reduce a
La posición del CM es, en función de θ
y su velocidad
Esto nos da la energía cinética
También podemos llegar a este resultado empleando la expresión para una barra conocidas las velocidades de sus extremos A y B
2.2 Energía potencial
La energía potencial gravitatoria la da la altura del CM
2.3 Lagrangiana
Restamos las dos cantidades
3 Ecuación de movimiento
Aplicamos la ecuación de Lagrange a la coordenada θ
lo que nos da la ecuación de movimiento
Vemos que empleando la mecánica analítica llegamos al resultado de forma mucho más corta que mediante mecánica vectorial, ya que no precisamos considerar la acción de las fuerzas de reacción.
4 Constante de movimiento
La lagrangiana de este problema no depende del tiempo y la energía cinética es una función cuadrática de la velocidad generalizada. Por tanto se conserva la energía mecánica