No Boletín - Afirmación falsa (Ex.Nov/16)
De Laplace
(→Solución) |
|||
Línea 21: | Línea 21: | ||
Y, por otra parte: | Y, por otra parte: | ||
<center><math> | <center><math> | ||
- | \overrightarrow{AB}=\overrightarrow{OB}-\overrightarrow{OA}= | + | \overrightarrow{AB}=\overrightarrow{OB}-\overrightarrow{OA}=-2\,\vec{\imath}-2\,\vec{\jmath}+2\,\vec{k}\,;\,\,\,\,\,\,\,\,\,\,\overrightarrow{BC}=\overrightarrow{OC}-\overrightarrow{OB}=-\vec{\imath}-2\,\vec{\jmath}+(\mathrm{p}-2)\,\vec{k} |
</math></center> | </math></center> | ||
Exigiendo la condición de ortogonalidad (producto escalar nulo) a los vectores <math>\overrightarrow{OB}\,</math> y <math>\overrightarrow{BC}\,</math>: | Exigiendo la condición de ortogonalidad (producto escalar nulo) a los vectores <math>\overrightarrow{OB}\,</math> y <math>\overrightarrow{BC}\,</math>: |
Revisión de 21:04 1 mar 2017
1 Enunciado
En un triedro cartesiano se consideran los siguientes puntos:
,
,
y
.
¿Cuál de las siguientes afirmaciones es falsa?
- (1)
,
y
constituyen una base si
- (2)
y
son ortogonales si
- (3)
,
y
son coplanarios si
- (4)
y
son paralelos si
2 Solución
Las coordenadas de un punto en un sistema de ejes cartesianos son las componentes de su vector de posición en la base ortonormal asociada, es decir:

Y, por otra parte:

Exigiendo la condición de ortogonalidad (producto escalar nulo) a los vectores y
:
![\overrightarrow{OB}\cdot\overrightarrow{BC}=0\,\,\,\,\,\Longrightarrow\,\,\,\,\,[2\,\vec{\jmath}+2\,\vec{k}]\cdot[-\vec{\imath}-2\,\vec{\jmath}+(\mathrm{p}-2)\,\vec{k}]=0\,\,\,\,\,\Longrightarrow\,\,\,\,\,2\,\mathrm{p}-8=0\,\,\,\,\,\Longrightarrow\,\,\,\,\,\mathrm{p}=4](/wiki/images/math/0/c/b/0cbaa5448781ec4941ffedecf2ab8e7d.png)
Por tanto, la afirmación (2) es correcta.
Exigiendo la condición de paralelismo (producto vectorial nulo) a los vectores y
:

Por tanto, la afirmación (4) es correcta.
Exigiendo la condición de no coplanariedad (producto mixto no nulo) a los vectores ,
y
, se garantiza que dicha terna constituya una base:

Por tanto, la afirmación (1) es correcta.
Por último, exigiendo la condición de coplanariedad (producto mixto nulo) a los vectores ,
y
:

Por tanto, la afirmación (3) es la que es FALSA.