Entrar Página Discusión Historial Go to the site toolbox

Tabla de fórmulas de variable compleja

De Laplace

(Diferencias entre revisiones)
Línea 120: Línea 120:
==Fórmula de Euler==
==Fórmula de Euler==
-
Empleando el desarrollo en serie de potencias de la exponencial, el seno y el coseno; o bien a partir de la ecuación del oscilador armónico se llega a que
+
Empleando el desarrollo en serie de potencias de la exponencial, el seno y el coseno; o bien a partir de la ecuación del oscilador armónico se llega a que, para todo número real <math>\varphi</math>
<center><math>\mathrm{e}^{\mathrm{j}\varphi}=\cos(\varphi)+\mathrm{j}\,\mathrm{sen}(\varphi)</math></center>
<center><math>\mathrm{e}^{\mathrm{j}\varphi}=\cos(\varphi)+\mathrm{j}\,\mathrm{sen}(\varphi)</math></center>
 +
 +
es decir, la exponencial de un número imaginario puro <math>\mathrm{j}\varphi</math> es un complejo unitario cuya parte real es el coseno del ángulo <math>\varphi</math> y su parte imaginaria es el seno del mismo ángulo, es decir, que se trata del complejo unitario que forma un ángulo <math>\varphi</math> con el eje real
 +
 +
Como caso particulares tenemos
 +
 +
<center><math>\mathrm{e}^{\mathrm{j}\pi/2}=\mathrm{j}\qquad\qquad \mathrm{e}^{\mathrm{j}\pi}=-1</math></center>
 +
 +
La última de ellas se escribe habitualmente
 +
 +
<center><math>\mathrm{e}^{\mathrm{j}\pi}+1=0</math></center>
 +
 +
La exponencial de un número imaginario se relaciona directamente con la forma polar de un número complejo
 +
 +
<center><math>z = R_\varphi = R\left(\cos(\varphi)+\mathrm{j}\,\mathrm{sen}(\varphi)\right)=R\mathrm{e}^{\mathrm{j}\varphi}</math></center>
==Exponencial de un número complejo==
==Exponencial de un número complejo==
==Logaritmo de un número complejo==
==Logaritmo de un número complejo==
==Funciones trigonométricas==
==Funciones trigonométricas==
==Funciones hiperbólicas==
==Funciones hiperbólicas==

Revisión de 18:28 18 oct 2014

Contenido

1 Unidad imaginaria

Se define la raíz cuadrada de -1 como la unidad imaginaria

\mathrm{i} = \mathrm{j} = \sqrt{-1}

En matemáticas se suele representar como i. En ingeniería como j para evitar confusiones con la intensidad de corriente.

Con ayuda de la unidad imaginaria se puede clacular la raíz de cualquier número negativo

\sqrt{-4}=\sqrt{4}\sqrt{-1}=2\mathrm{j}

2 Números complejos

Se definen a partir de un par de números reales como

z = x + yj

Los números complejos tienen numerosas similitudes con los pares de R2 (x,y) pero con propiedades adicionales.

2.1 Parte real y parte imaginaria

Para un número complejo de la forma anterior

Parte real
Es el sumando que no multiplica a la unidad imaginaria
x = \mathrm{Re}(z)\,
Parte imaginaria
Es el coeficiente que multiplica a la unidad imaginaria.
y = \mathrm{Im}(z)\,

2.2 Representación en el plano complejo

Un número complejo puede representarse como un punto P(x,y) en un plano (denominado plano complejo). La parte real es la abcisa y la imaginaria la ordenada. El eje real es el conjunto de todos los complejos puramente reales y el eje imaginario el de todos los imaginarios puros.

Alternativamente, en lugar de un punto puede usarse un vector (llamado afijo) que une el origen z = 0 con el punto P(x,y) del plano.

2.3 Forma polar de un número complejo

Alternativamente, un número complejo puede representarse por su módulo (el del afijo)

R=|z|=\sqrt{x^2+y^2}

y su argumento, que es el ángulo que el afijo forma con el eje real

\varphi = \arg(z)=\mathrm{arctg}\left(\frac{y}{x}\right)

Las relaciones inversas de estas son

x = \mathrm{Re}(z) = |z|\cos(\varphi)\qquad\qquad y = \mathrm{Im}(z) = |z|\mathrm{sen}(\varphi)

y por tanto

z = R\left(\cos(\varphi)+\mathrm{j}\,\mathrm{sen}(\varphi)\right)

Existen distintas formas de expresar un número complejo en forma polar, una de ellas es

z = R_\varphi

así

z = 6_{30^\circ} = 6\cos(30^\circ)+6\,\mathrm{sen}(30^\circ)\mathrm{j} = 3\sqrt{3}+3\mathrm{j}

3 Conjugado de un número complejo

A partir de un número complejo z = x + yj se dfine su conjugado

z * = xyj

es decir, con la misma parte real y con la parte imaginaria cambiada de signo.

Gráficamente el punto z * es el simétrico de z respecto al eje real.

En la forma polar, el conjugado tiene el mismo módulo y argumento opuesto

\left|z^*\right| = \left|z\right|\qquad\qquad\arg(z^*)=-\arg(z)

3.1 Cálculo de la parte real y parte imaginaria

Si conocemos un complejo y su conjugado, la parte real y la imaginaria pueden calcularse como

\mathrm{Re}(z)=\frac{z+z^*}{2}\qquad\qquad \mathrm{Im}(z)=\frac{z-z^*}{2\mathrm{j}}

3.2 Cálculo del módulo

A partir del complejo y su conjugado

|z| = \sqrt{zz^*}

4 Igualdad de complejos

Dos complejos son iguales cuando son iguales sus partes reales y sus partes imaginarias

z = w \Leftrightarrow \left\{\begin{array}{rcl}\mathrm{Re}(z)& = & \mathrm{Re}(w)\\ \mathrm{Im}(z)&=&\mathrm{Im}(w)\end{array}\right.

En términos de módulo y argumento, son iguales cuando tienen el mismo módulo y su argumento se diferencia en un número entero de vueltas

z = w \Leftrightarrow \left\{\begin{array}{rcl}|z|& = & |w|\\ \mathrm{arg}(z)&=&\mathrm{arg}(w)+2k\pi\end{array}\right.

5 Suma de números complejos

Para sumar dos complejos se suman sus partes reales y sus partes imaginarias

\left.\begin{array}{lcr}z_1 & = & x_1+\mathrm{j}\,y_1\\ z_2 & = &x_2+\mathrm{j}\,y_2\end{array}\right\}\qquad\Rightarrow\qquad z_1+z_2=(x_1+x_2)+\mathrm{j}(y_1+y_2)

La suma de complejos verifica las propiedades que definenen un grupo abeliano (asociativa, elemento neutro, elemento simétrico y conmutativa).

Gráficamente, la suma de números complejos equivale a la suma de vectores en el plano, empleando la regla del paralelogramo o del triángulo.

6 Producto de números complejos

Aplicando la fórmula del producto de dos binomios

z_1z_2=(x_1+\mathrm{j}y_1)(x_2+\mathrm{j}y_2)=x_1x_2+\mathrm{j}x_1y_2+\mathrm{j}x_2y_1+\overbrace{\mathrm{j}^2}^{=-1}y_1y_2

lo que da

\left.\begin{array}{lcr}z_1 & = & x_1+\mathrm{j}\,y_1\\ z_2 & = &x_2+\mathrm{j}\,y_2\end{array}\right\}\qquad\Rightarrow\qquad z_1z_2=(x_1x_2-y_1y_2)+\mathrm{j}(x_2y_1+x_1y_2)

En forma polar, se cumple que los módulos se multiplican y los argumentos se suman

\left.\begin{array}{lcr}z_1 & = & (R_1)_{\varphi_1}\\ z_2 & = &(R_2)_{\varphi_2}\end{array}\right\}\qquad\Rightarrow\qquad z_1z_2=(R_1R_2)_{\varphi_1+\varphi_2}

Gráficamente, el producto de un número complejo z1 por otro z_2 =(R_2)_{\varphi_2} es una combinación de dos pasos:

  • Un giro de un ángulo \varphi_2
  • Una dilatación por un factor R2

En particular, si z2 es unitario (módulo unidad), la multiplicación por él se reduce a un giro, mientras que si es no unitario pero puramente real el producto se reduce a una dilatación.

Puesto que un complejo y su conjugado tienen módulos opuestos

zz^* = |z|^2\,

7 Fórmula de Euler

Empleando el desarrollo en serie de potencias de la exponencial, el seno y el coseno; o bien a partir de la ecuación del oscilador armónico se llega a que, para todo número real \varphi

\mathrm{e}^{\mathrm{j}\varphi}=\cos(\varphi)+\mathrm{j}\,\mathrm{sen}(\varphi)

es decir, la exponencial de un número imaginario puro \mathrm{j}\varphi es un complejo unitario cuya parte real es el coseno del ángulo \varphi y su parte imaginaria es el seno del mismo ángulo, es decir, que se trata del complejo unitario que forma un ángulo \varphi con el eje real

Como caso particulares tenemos

\mathrm{e}^{\mathrm{j}\pi/2}=\mathrm{j}\qquad\qquad \mathrm{e}^{\mathrm{j}\pi}=-1

La última de ellas se escribe habitualmente

e + 1 = 0

La exponencial de un número imaginario se relaciona directamente con la forma polar de un número complejo

z = R_\varphi = R\left(\cos(\varphi)+\mathrm{j}\,\mathrm{sen}(\varphi)\right)=R\mathrm{e}^{\mathrm{j}\varphi}

8 Exponencial de un número complejo

9 Logaritmo de un número complejo

10 Funciones trigonométricas

11 Funciones hiperbólicas

Herramientas:

Herramientas personales
TOOLBOX
LANGUAGES
licencia de Creative Commons
Aviso legal - Acerca de Laplace