Entrar Página Discusión Historial Go to the site toolbox

Tabla de fórmulas de variable compleja

De Laplace

(Diferencias entre revisiones)
Línea 42: Línea 42:
<center><math>x = \mathrm{Re}(z) = |z|\cos(\varphi)\qquad\qquad y = \mathrm{Im}(z) = |z|\mathrm{sen}(\varphi)</math></center>
<center><math>x = \mathrm{Re}(z) = |z|\cos(\varphi)\qquad\qquad y = \mathrm{Im}(z) = |z|\mathrm{sen}(\varphi)</math></center>
 +
 +
y por tanto
 +
 +
<center><math>z = R\left(\cos(\varphi)+\mathrm{j}\,\mathrm{sen}(\varphi)\right)</math></center>
Existen distintas formas de expresar un número complejo en forma polar, una de ellas es
Existen distintas formas de expresar un número complejo en forma polar, una de ellas es
Línea 85: Línea 89:
==Suma de números complejos==
==Suma de números complejos==
Para sumar dos complejos se suman sus partes reales y sus partes imaginarias
Para sumar dos complejos se suman sus partes reales y sus partes imaginarias
 +
 +
z_1=x_1+\mathrm{j}\,y_1\qquad\qquad z_1=x_1+\mathrm{j}\,y_1
==Producto de números complejos==
==Producto de números complejos==
==Fórmula de Euler==
==Fórmula de Euler==

Revisión de 16:01 18 oct 2014

Contenido

1 Unidad imaginaria

Se define la raíz cuadrada de -1 como la unidad imaginaria

\mathrm{i} = \mathrm{j} = \sqrt{-1}

En matemáticas se suele representar como i. En ingeniería como j para evitar confusiones con la intensidad de corriente.

Con ayuda de la unidad imaginaria se puede clacular la raíz de cualquier número negativo

\sqrt{-4}=\sqrt{4}\sqrt{-1}=2\mathrm{j}

2 Números complejos

Se definen a partir de un par de números reales como

z = x + yj

Los números complejos tienen numerosas similitudes con los pares de R2 (x,y) pero con propiedades adicionales.

2.1 Parte real y parte imaginaria

Para un número complejo de la forma anterior

Parte real
Es el sumando que no multiplica a la unidad imaginaria
x = \mathrm{Re}(z)\,
Parte imaginaria
Es el coeficiente que multiplica a la unidad imaginaria.
y = \mathrm{Im}(z)\,

2.2 Representación en el plano complejo

Un número complejo puede representarse como un punto P(x,y) en un plano (denominado plano complejo). La parte real es la abcisa y la imaginaria la ordenada. El eje real es el conjunto de todos los complejos puramente reales y el eje imaginario el de todos los imaginarios puros.

Alternativamente, en lugar de un punto puede usarse un vector (llamado afijo) que une el origen z = 0 con el punto P(x,y) del plano.

2.3 Forma polar de un número complejo

Alternativamente, un número complejo puede representarse por su módulo (el del afijo)

R=|z|=\sqrt{x^2+y^2}

y su argumento, que es el ángulo que el afijo forma con el eje real

\varphi = \arg(z)=\mathrm{arctg}\left(\frac{y}{x}\right)

Las relaciones inversas de estas son

x = \mathrm{Re}(z) = |z|\cos(\varphi)\qquad\qquad y = \mathrm{Im}(z) = |z|\mathrm{sen}(\varphi)

y por tanto

z = R\left(\cos(\varphi)+\mathrm{j}\,\mathrm{sen}(\varphi)\right)

Existen distintas formas de expresar un número complejo en forma polar, una de ellas es

z = R_\varphi

así

z = 6_{30^\circ} = 6\cos(30^\circ)+6\,\mathrm{sen}(30^\circ)\mathrm{j} = 3\sqrt{3}+3\mathrm{j}

3 Conjugado de un número complejo

A partir de un número complejo z = x + yj se dfine su conjugado

z * = xyj

es decir, con la misma parte real y con la parte imaginaria cambiada de signo.

Gráficamente el punto z * es el simétrico de z respecto al eje real.

En la forma polar, el conjugado tiene el mismo módulo y argumento opuesto

\left|z^*\right| = \left|z\right|\qquad\qquad\arg(z^*)=-\arg(z)

3.1 Cálculo de la parte real y parte imaginaria

Si conocemos un complejo y su conjugado, la parte real y la imaginaria pueden calcularse como

\mathrm{Re}(z)=\frac{z+z^*}{2}\qquad\qquad \mathrm{Im}(z)=\frac{z-z^*}{2\mathrm{j}}

3.2 Cálculo del módulo

A partir del complejo y su conjugado

|z| = \sqrt{zz^*}

4 Igualdad de complejos

Dos complejos son iguales cuando son iguales sus partes reales y sus partes imaginarias

z = w \Leftrightarrow \left\{\begin{array}{rcl}\mathrm{Re}(z)& = & \mathrm{Re}(w)\\ \mathrm{Im}(z)&=&\mathrm{Im}(w)\end{array}\right.

En términos de módulo y argumento, son iguales cuando tienen el mismo módulo y su argumento se diferencia en un número entero de vueltas

z = w \Leftrightarrow \left\{\begin{array}{rcl}|z|& = & |w|\\ \mathrm{arg}(z)&=&\mathrm{arg}(w)+2k\pi\end{array}\right.

5 Suma de números complejos

Para sumar dos complejos se suman sus partes reales y sus partes imaginarias

z_1=x_1+\mathrm{j}\,y_1\qquad\qquad z_1=x_1+\mathrm{j}\,y_1

6 Producto de números complejos

7 Fórmula de Euler

8 Exponencial de un número complejo

9 Logaritmo de un número complejo

10 Funciones trigonométricas

11 Funciones hiperbólicas

Herramientas:

Herramientas personales
TOOLBOX
LANGUAGES
licencia de Creative Commons
Aviso legal - Acerca de Laplace