Entrar Página Discusión Historial Go to the site toolbox

Fuerza magnética sobre una espira inclinada

De Laplace

(Diferencias entre revisiones)
(Fuerzas)
Línea 28: Línea 28:
;Lado AB:
;Lado AB:
-
<center><math>\vec{F}_{AB}=(0.2)\left((3\vec{\imath}+5\vec{\jmath}-4\vec{k})-(3\vec{\imath}-5\vec{\jmath}-4\vec{k})\right)\times(0.01\vec{k})\,\mathrm{N}=(0.2)(10\vec{\jmath})\times(0.01\vec{k})=20\,\vec{\imath}\,\mathrm{mN}</math></center>
+
<center><math>\vec{F}_{AB}=(0.2\,\mathrm{A})\left((3\vec{\imath}+5\vec{\jmath}-4\vec{k})-(3\vec{\imath}-5\vec{\jmath}-4\vec{k})\right)\mathrm{cm}\times(10\vec{k})\,\mathrm{mT}=(0.2)(0.1\vec{\jmath})\times(0.01\vec{k})=0.20\,\vec{\imath}\,\mathrm{mN}</math></center>
;Lado BC:
;Lado BC:
-
<center><math>\vec{F}_{BC}=(0.2)\left((-3\vec{\imath}+5\vec{\jmath}+4\vec{k})-(3\vec{\imath}+5\vec{\jmath}-4\vec{k})\right)\times(0.01\vec{k})\,\mathrm{N}=(0.2)(-6\vec{\imath}+8\vec{k})\times(0.01\vec{k})=12\,\vec{\jmath}\,\mathrm{mN}</math></center>
+
<center><math>\vec{F}_{BC}=(0.2\,\mathrm{A})\left((-3\vec{\imath}+5\vec{\jmath}+4\vec{k})-(3\vec{\imath}+5\vec{\jmath}-4\vec{k})\right)\mathrm{cm}\times(10\vec{k})\,\mathrm{mT}=(0.2)(-0.06\vec{\imath}+0.08\vec{k})\times(0.01\vec{k})=0.12\,\vec{\jmath}\,\mathrm{mN}</math></center>
;Lado CD:
;Lado CD:
-
<center><math>\vec{F}_{CD}=-20\,\vec{\imath}\,\mathrm{mN}</math></center>
+
<center><math>\vec{F}_{CD}=-0.20\,\vec{\imath}\,\mathrm{mN}</math></center>
;Lado DA:
;Lado DA:
-
<center><math>\vec{F}_{DA}=-12\,\vec{\jmath}\,\mathrm{mN}</math></center>
+
<center><math>\vec{F}_{DA}=-0.12\,\vec{\jmath}\,\mathrm{mN}</math></center>
Siendo la fuerza total sobre la espira
Siendo la fuerza total sobre la espira
Línea 46: Línea 46:
==Par==
==Par==
 +
El que la resultante de las fuerzas se anula no quiere decir que el campo magnético no ejerza fuerza alguna sobre la espira. Solo implica que su centro de masas no se acelera.
 +
 +
Al estar las fuerzas aplicadas sobre a lo largo de rectas paralelas, lo que sí se produce es un par de fuerzas. La fuerza sobre el lado superior de la espira y la fuerza sobre el lado inferior tienden a producir un giro de ésta alrededor del eje OX.
 +
 +
Para medir este efecto calculamos la resultante del momento de las fuerzas aplicadas
 +
 +
<center><math>\vec{M}=\sum_i \vec{r}_i\times \vec{F}_i</math></center>
 +
 +
siendo el punto de aplicación de cada una el punto medio de cada lado. Así tenemos
 +
 +
;Lado AB:
 +
 +
<center><math>\vec{r}_{AB}=\frac{\vec{r}_A+\vec{r}_B}{2}=(3\vec{\imath}-4\vec{k})\,\mathrm{cm}</math>{{qquad}}{{qquad}}<math>\vec{r}_{AB}\times\vec{F}_{AB}=(0.03\vec{\imath}-0.04\times\vec{k})\times (0.01\vec{k})\mathrm{N\cdot m}=-0.08\vec{\jmath}\mathrm{N\cdot m}</math></center>
==Momento magnético==
==Momento magnético==
[[Categoría:Problemas de campo magnético (GIE)]]
[[Categoría:Problemas de campo magnético (GIE)]]

Revisión de 20:51 12 jun 2013

Contenido

1 Enunciado

Una espira cuadrada ABCD de lado 10 cm se encuentra en el interior de un campo magnético uniforme \vec{B}=10\vec{k} (mT). Los vértices de la espira se encuentran en


\vec{r}_A=3\vec{\imath}-5\vec{\jmath}-4\vec{k}\qquad
\vec{r}_B=3\vec{\imath}+5\vec{\jmath}-4\vec{k}\qquad
\vec{r}_C=-3\vec{\imath}+5\vec{\jmath}+4\vec{k}\qquad
\vec{r}_D=-3\vec{\imath}-5\vec{\jmath}+4\vec{k}

(distancias medidas en cm). Por la espira circula una corriente de 0.2 A en el sentido ABCD.

  1. Halle la fuerza magnética sobre cada lado de la espira, así como la fuerza total sobre la espira
  2. Considerando cada fuerza aplicada sobre el centro del lado correspondiente, halle el momento resultante, según la ley
\vec{M}_O=\sum_i\vec{r}_i\times\vec{F}_i
  1. Calcule el momento magnético de la espira y compruebe que
\vec{M}_O = \vec{m}\times\vec{B}\qquad\qquad (\vec{m}=IS\vec{n})

2 Fuerzas

La fuerza sobre un segmento rectilíneo por el cual circula una intensidad de corriente I, inmerso en un campo magnético uniforme vale

\vec{F}_{AB} = I(\Delta \vec{r})\times\vec{B}\qquad\qquad \Delta\vec{r}=\overrightarrow{AB}=\vec{r}_B-\vec{r}_{A}

que aplicado a cada caso nos da

Lado AB
\vec{F}_{AB}=(0.2\,\mathrm{A})\left((3\vec{\imath}+5\vec{\jmath}-4\vec{k})-(3\vec{\imath}-5\vec{\jmath}-4\vec{k})\right)\mathrm{cm}\times(10\vec{k})\,\mathrm{mT}=(0.2)(0.1\vec{\jmath})\times(0.01\vec{k})=0.20\,\vec{\imath}\,\mathrm{mN}
Lado BC
\vec{F}_{BC}=(0.2\,\mathrm{A})\left((-3\vec{\imath}+5\vec{\jmath}+4\vec{k})-(3\vec{\imath}+5\vec{\jmath}-4\vec{k})\right)\mathrm{cm}\times(10\vec{k})\,\mathrm{mT}=(0.2)(-0.06\vec{\imath}+0.08\vec{k})\times(0.01\vec{k})=0.12\,\vec{\jmath}\,\mathrm{mN}
Lado CD
\vec{F}_{CD}=-0.20\,\vec{\imath}\,\mathrm{mN}
Lado DA
\vec{F}_{DA}=-0.12\,\vec{\jmath}\,\mathrm{mN}

Siendo la fuerza total sobre la espira

\vec{F}=\vec{F}_{AB}+\vec{F}_{BC}+\vec{F}_{CD}+\vec{F}_{DA}=\vec{0}
Archivo:fuerza-espira.png

3 Par

El que la resultante de las fuerzas se anula no quiere decir que el campo magnético no ejerza fuerza alguna sobre la espira. Solo implica que su centro de masas no se acelera.

Al estar las fuerzas aplicadas sobre a lo largo de rectas paralelas, lo que sí se produce es un par de fuerzas. La fuerza sobre el lado superior de la espira y la fuerza sobre el lado inferior tienden a producir un giro de ésta alrededor del eje OX.

Para medir este efecto calculamos la resultante del momento de las fuerzas aplicadas

\vec{M}=\sum_i \vec{r}_i\times \vec{F}_i

siendo el punto de aplicación de cada una el punto medio de cada lado. Así tenemos

Lado AB
\vec{r}_{AB}=\frac{\vec{r}_A+\vec{r}_B}{2}=(3\vec{\imath}-4\vec{k})\,\mathrm{cm}        \vec{r}_{AB}\times\vec{F}_{AB}=(0.03\vec{\imath}-0.04\times\vec{k})\times (0.01\vec{k})\mathrm{N\cdot m}=-0.08\vec{\jmath}\mathrm{N\cdot m}

4 Momento magnético

Herramientas:

Herramientas personales
TOOLBOX
LANGUAGES
licencia de Creative Commons
Aviso legal - Acerca de Laplace