Superposición de fuerzas electrostáticas (GIA)
De Laplace
(→Carga que anula la interacción sobre q_3) |
(→Enunciado) |
||
Línea 5: | Línea 5: | ||
# Calcular la fuerza sobre <math>q_3</math>. | # Calcular la fuerza sobre <math>q_3</math>. | ||
# ¿Qué valor ha de tener una carga <math>q_4</math> situada en el origen para que la fuerza neta sobre la partícula con carga <math>q_3</math> pase a ser nula? | # ¿Qué valor ha de tener una carga <math>q_4</math> situada en el origen para que la fuerza neta sobre la partícula con carga <math>q_3</math> pase a ser nula? | ||
+ | |||
+ | |||
+ | [[Categoría:Problemas de campo eléctrico F2 GIA]] | ||
==Solución== | ==Solución== |
última version al 00:19 11 feb 2013
Contenido |
1 Enunciado
Dos partículas con cargas eléctricas q1 = q2 = 1μC se encuentran situadas en las posiciones y , siendo . Se coloca una tercera partícula con carga en .
- Calcular la fuerza sobre q3.
- ¿Qué valor ha de tener una carga q4 situada en el origen para que la fuerza neta sobre la partícula con carga q3 pase a ser nula?
2 Solución
2.1 Fuerza sobre la carga q3
Las fuerzas que describen la interacción electrostática verifican el principio de superposición. En el sistema que nos ocupa, la q3 está sometida a la acción simultánea de las cargas q1 y q2. La fuerza total que actúa sobre aquélla es igual a la suma vectorial de las fuerzas electrostáticas que cada una de las cargas q1 y q2 ejercerían por separado, y que verificarán la ley de Coulomb:
Utilizando las expresiones analíticas de los vectores que indican las posiciones de las tres cargas, se obtiene:
Y como las cargas q1 y q2 son idénticas, se tendrá que las componentes cartesianas de la fuerza total so iguales:
2.2 Carga que anula la interacción sobre q3
Una carga q4 en el origen del sistema de referencia ejercería una fuerza
Y para que ésta sea nula se deberá cumplir:
donde hemos tenido en cuenta que las cargas q1 y q2 son idénticas. Y para que ésta sea la fuerza ejercicia por la carga q4 se deberá cumplir...