Entrar Página Discusión Historial Go to the site toolbox

Potencial en el centro de una esfera

De Laplace

(Diferencias entre revisiones)
(Esfera cargada de forma no uniforme)
(Por integración directa)
Línea 62: Línea 62:
siendo <math>Q</math> la carga total de la superficie esférica que en este caso es
siendo <math>Q</math> la carga total de la superficie esférica que en este caso es
-
<center><math>Q = \int \sigma_s \,\mathrm{d}S' = \int_0^{2\pi}\int_0^\pi \sigma_0 \cos\theta' R`2 \,\mathrm{sen}\,\theta'\,\mathrm{d}\theta'\,\mathrm{d}\varphi' = 2\pi R^2 \int_0^\pi \cos\theta'\,\mathrm{sen}\,\theta'\,\mathrm{d}\theta' = 0</math></center>
+
<center><math>Q = \int \sigma_s\,\mathrm{d}S' = </math></center>
La carga total es nula, como corresponde a que en esta distribución toda la carga en un hemisferio (el que va de 0 a <math>\pi/2</math>) es positiva, mientras que en el otro es igual y de signo contrario. Por tanto el potencial en el centro de la esfera es nulo.
La carga total es nula, como corresponde a que en esta distribución toda la carga en un hemisferio (el que va de 0 a <math>\pi/2</math>) es positiva, mientras que en el otro es igual y de signo contrario. Por tanto el potencial en el centro de la esfera es nulo.

Revisión de 20:57 6 nov 2008

Contenido

1 Enunciado

Calcule el potencial eléctrico en el centro de una esfera de radio R, cargada con una carga Q0 distribuida…

  1. uniformemente en su superficie
  2. de forma no uniforme en su superficie, con densidad σs = σ0cosθ.
  3. uniformemente en su volumen
  4. en su volumen con una densidad ρ = Ar (calcule previamente el valor de la constante A).

2 Solución

2.1 Esfera cargada uniformemente en la superficie

En este caso de una carga en el centro de una esfera, la simetría del problema permite hacer el cálculo de forma sencilla tanto por integración directa como a partir del campo eléctrico.

2.1.1 Por integración directa

La expresión integral para el potencial eléctrico debido a una distribución superficial de carga es

\phi(\mathbf{r}) = \frac{1}{4\pi\varepsilon_0}\int_S \frac{\sigma_s(\mathbf{r}')}{|\mathbf{r}-\mathbf{r}'|}\,\mathrm{d}S'

En nuestro caso la superficie de integración es la esfera de radio R, en cuyo centro situamos el origen de coordenadas, que es la posición en que queremos hallar el potencial. Por ello

\sigma_s = \sigma_0 = \frac{Q}{4\pi R^2}    \mathbf{r} = \mathbf{0}    \mathbf{r'} = R\mathbf{u}_{r'}     |\mathbf{r}-\mathbf{r}'|=R</math>

Sustituyendo todo esto nos queda

\phi(\mathbf{0}) = \frac{1}{4\pi\varepsilon_0}\,\frac{Q}{4\pi R^2}\int_S \frac{\mathrm{d}S'}{R} = \frac{Q}{4\pi\varepsilon_0 R}

El resultado es un potencial análogo al que crearía una carga puntual situada a una distancia R. La razón es evidente: el centro de la esfera se encuentra a la misma distancia de todos los puntos de la superficie. Por tanto la contribución de cada elemento de superficie al potencial es simplemente la carga en dicho elemento dividida por la distancia, que es siempre la misma, y la constante 1/4\pi\varepsilon_0. El resultado es la carga total dividida por 1/4\pi\varepsilon_0 y por R.

2.1.2 A partir del campo eléctrico

Para hallar el potencial a partir del campo eléctrico, primero debemos conocer éste en todos los puntos del espacio, no solo en el origen.

Este cálculo se puede hacer por aplicación de la ley de Gauss y el resultado es

\mathbf{E}=\begin{cases}\mathbf{0} & r < R \\ \displaystyle \frac{Q\mathbf{u}_r}{4\pi\varepsilon_0 r^2} & r > R\end{cases}

esto es, el campo de una carga puntual en el exterior de la esfera, y un campo nulo en el interior de ella.

Para hallar el potencial en el centro de la esfera debemos calcular la integral desde el origen de potencial (situado en el infinito) hasta el punto donde queremos hallar el potencial (el origen de coordenadas), esto es

\phi(\mathbf{0}) = -\int_{\infty}^\mathbf{0}\mathbf{E}\cdot\mathrm{d}\mathbf{r}

El resultado de esta integral es independiente del camino elegido, pero hay que elegir al menos uno. El más simple es uno rectilíneo radial, de forma que \mathrm{d}\mathbf{r} = \mathrm{d}r\mathbf{u}_r.

La integral de camino se compone de dos tramos, uno por el exterior y otro por el interior de la esfera

\phi(\mathbf{0}) = -\int_{\infty}^\mathbf{0}\mathbf{E}\cdot\mathrm{d}\mathbf{r}= \int_\infty^R \frac{Q\mathrm{d}r}{4\pi\varepsilon_0 r^2}+\int_R^0 0\,\mathrm{d}r = \frac{Q}{4\pi \varepsilon_0 R}

que es por supuesto el mismo resultado que el obtenido anteriormente. Nótese que es muy importante incluir las dos contribuciones a la integral y no pensar que el potencial en el interior es solo la integral del campo en el interior. Puesto que el camino de integración viene desde el infinito, el exterior también debe contarse.

Este método de cálculo del potencial tiene la ventaja de que puede extenderse fácilmente a cualquier punto del espacio, no solo al centro de la esfera, mientras que la integración directa, aunque es factible, implica laboriosos cálculos.

Si este cálculo se aplica a otros valores de r el resultado es

\phi(r)=\begin{cases}\displaystyle \frac{Q}{4\pi\varepsilon_0 R} & r < R \\ & \\ \displaystyle \frac{Q}{4\pi\varepsilon_0 r} & r > R\end{cases}

ya que para todos los puntos del interior la segunda integral es nula, resultando un potencial uniforme. En los puntos del exterior tenemos la intgeral del campo de una carga puntual y el resultado es el potencial de una carga puntual.

2.2 Esfera cargada de forma no uniforme

2.2.1 Por integración directa

Para el caso de una densidad de carga no uniforme, el procedimiento es exactamente el mismo que en el apartado anterior. De nuevo tenemos la misma posición de las cargas y la misma posición del punto donde queremos hallar el potencial. Por ello, volvemos a tener

\phi(\mathbf{0}) = \frac{Q}{4\pi\varepsilon_0 R}

siendo Q la carga total de la superficie esférica que en este caso es

Q = \int \sigma_s\,\mathrm{d}S' =

La carga total es nula, como corresponde a que en esta distribución toda la carga en un hemisferio (el que va de 0 a π / 2) es positiva, mientras que en el otro es igual y de signo contrario. Por tanto el potencial en el centro de la esfera es nulo.

\phi(\mathbf{0}) = \frac{Q}{4\pi\varepsilon_0 R}=0

2.3 Esfera cargada uniformemente en el volumen=

2.4 Esfera cargada no uniformemente en el volumen

Herramientas:

Herramientas personales
TOOLBOX
LANGUAGES
licencia de Creative Commons
Aviso legal - Acerca de Laplace