Conexiones de dos bombillas
De Laplace
Línea 37: | Línea 37: | ||
<center><math>P_r = I^2r=\frac{r\mathcal{E}^2}{(r+2R0)^2}</math></center> | <center><math>P_r = I^2r=\frac{r\mathcal{E}^2}{(r+2R0)^2}</math></center> | ||
==Bombillas en paralelo== | ==Bombillas en paralelo== | ||
+ | Si las dos bombillas están en paralelo, la diferencia de potencial entre sus extremos es la misma para los dos e igual a la tensión a la salida de la fuente | ||
+ | |||
+ | <center><math>V_p-V_N = I_1R_0\,</math></center> | ||
+ | |||
+ | siendo <math>I_1</math> la corriente que circula por una bombilla (que al ser las dos iguales, será idéntica a la que pasa por la otra). | ||
+ | |||
+ | La tensión a la salida de la fuente no es igual a la f.e.m., por no ser la fuente ideal, sino que hay una caída de tensión en la resistencia interna | ||
+ | |||
+ | <center><math>V_P-V_N = \mathcal{E}-Ir</math></center> | ||
+ | |||
+ | siendo | ||
+ | |||
+ | <center><math>I = I_1+I_2 = 2I_1\,</math></center> | ||
+ | |||
+ | Nos queda entonces que la corriente que va por cada bombilla es | ||
+ | |||
+ | <center><math>\mathcal{E}-2I_1r = I_1R_0\qquad\Rightarrow\qquad I_1 = \frac{\mathcal{E}}{2r+R_0}</math></center> | ||
+ | |||
+ | |||
[[Categoría:Problemas de corriente eléctrica (GIE)]] | [[Categoría:Problemas de corriente eléctrica (GIE)]] |
Revisión de 19:45 22 may 2012
1 Enunciado
Se desea encender dos bombillas de resistencia R0, para lo cual se dispone de una batería de f.e.m. y resistencia interna r.
- En un primer montaje se disponen las dos bombillas en serie.
- Calcule la intensidad de corriente que circula por cada una.
- Halle la potencia que consumen (que dará una medida de la luz que desprenden).
- Calcule la potencia desarrollada por el generador y el consumo de energía en el propio generador.
- A continuación se prueba a montarlas en paralelo.
- Calcule la intensidad de corriente que circula por cada una.
- Halle la potencia que consumen.
- Calcule la potencia desarrollada por el generador y el consumo de energía en el propio generador.
- ¿En cuál de los dos montajes el conjunto de las dos bombillas dará más luz?
- Supongamos que tenemos una batería de 10 V y 1 Ω de resistencia interna y dos bombillas en cuya etiqueta pone “10V 25W”, ¿cómo deberemos montarlas para que den el máximo de luz? ¿Cuánta potencia consumirán en ese caso?
2 Bombillas en serie
Si las dos bombillas están en serie, el modelo del sistema es un circuito sencillo formado por cuatro elementos en serie:
- Una fuente ideal de f.e.m
- La resistencia interna de la fuente, r
- Las dos resistencias de las dos bombillas.
En este circuito la corriente que circula por él es igual a la f.e.m. dividida por la suma de todas las resistencias
La potencia disipada en las dos bombillas conjuntamente es
La potencia generada por la fuente vale
y la consumida en la propia fuente es la diferencia entre las dos anteriores
3 Bombillas en paralelo
Si las dos bombillas están en paralelo, la diferencia de potencial entre sus extremos es la misma para los dos e igual a la tensión a la salida de la fuente
siendo I1 la corriente que circula por una bombilla (que al ser las dos iguales, será idéntica a la que pasa por la otra).
La tensión a la salida de la fuente no es igual a la f.e.m., por no ser la fuente ideal, sino que hay una caída de tensión en la resistencia interna
siendo
Nos queda entonces que la corriente que va por cada bombilla es